Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0eln0 | Unicode version |
Description: A natural number is nonempty iff it contains the empty set. Although in constructive mathematics it is generally more natural to work with inhabited sets and ignore the whole concept of nonempty sets, in the specific case of natural numbers this theorem may be helpful in converting proofs which were written assuming excluded middle. (Contributed by Jim Kingdon, 28-Aug-2019.) |
Ref | Expression |
---|---|
nn0eln0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elnn 4340 | . 2 | |
2 | noel 3228 | . . . . 5 | |
3 | eleq2 2101 | . . . . 5 | |
4 | 2, 3 | mtbiri 600 | . . . 4 |
5 | nner 2210 | . . . 4 | |
6 | 4, 5 | 2falsed 618 | . . 3 |
7 | id 19 | . . . 4 | |
8 | ne0i 3230 | . . . 4 | |
9 | 7, 8 | 2thd 164 | . . 3 |
10 | 6, 9 | jaoi 636 | . 2 |
11 | 1, 10 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 98 wo 629 wceq 1243 wcel 1393 wne 2204 c0 3224 com 4313 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-nul 3883 ax-pow 3927 ax-pr 3944 ax-un 4170 ax-iinf 4311 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-ral 2311 df-rex 2312 df-v 2559 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-nul 3225 df-pw 3361 df-sn 3381 df-pr 3382 df-uni 3581 df-int 3616 df-suc 4108 df-iom 4314 |
This theorem is referenced by: nnmord 6090 |
Copyright terms: Public domain | W3C validator |