Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfunid | Unicode version |
Description: Deduction version of nfuni 3586. (Contributed by NM, 18-Feb-2013.) |
Ref | Expression |
---|---|
nfunid.3 |
Ref | Expression |
---|---|
nfunid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfuni2 3582 | . 2 | |
2 | nfv 1421 | . . 3 | |
3 | nfv 1421 | . . . 4 | |
4 | nfunid.3 | . . . 4 | |
5 | nfvd 1422 | . . . 4 | |
6 | 3, 4, 5 | nfrexdxy 2357 | . . 3 |
7 | 2, 6 | nfabd 2196 | . 2 |
8 | 1, 7 | nfcxfrd 2176 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 cab 2026 wnfc 2165 wrex 2307 cuni 3580 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-rex 2312 df-uni 3581 |
This theorem is referenced by: dfnfc2 3598 nfiotadxy 4870 |
Copyright terms: Public domain | W3C validator |