ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfunid Unicode version

Theorem nfunid 3587
Description: Deduction version of nfuni 3586. (Contributed by NM, 18-Feb-2013.)
Hypothesis
Ref Expression
nfunid.3  |-  ( ph  -> 
F/_ x A )
Assertion
Ref Expression
nfunid  |-  ( ph  -> 
F/_ x U. A
)

Proof of Theorem nfunid
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfuni2 3582 . 2  |-  U. A  =  { y  |  E. z  e.  A  y  e.  z }
2 nfv 1421 . . 3  |-  F/ y
ph
3 nfv 1421 . . . 4  |-  F/ z
ph
4 nfunid.3 . . . 4  |-  ( ph  -> 
F/_ x A )
5 nfvd 1422 . . . 4  |-  ( ph  ->  F/ x  y  e.  z )
63, 4, 5nfrexdxy 2357 . . 3  |-  ( ph  ->  F/ x E. z  e.  A  y  e.  z )
72, 6nfabd 2196 . 2  |-  ( ph  -> 
F/_ x { y  |  E. z  e.  A  y  e.  z } )
81, 7nfcxfrd 2176 1  |-  ( ph  -> 
F/_ x U. A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4   {cab 2026   F/_wnfc 2165   E.wrex 2307   U.cuni 3580
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rex 2312  df-uni 3581
This theorem is referenced by:  dfnfc2  3598  nfiotadxy  4870
  Copyright terms: Public domain W3C validator