Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfnegd Unicode version

Theorem nfnegd 7207
 Description: Deduction version of nfneg 7208. (Contributed by NM, 29-Feb-2008.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfnegd.1
Assertion
Ref Expression
nfnegd

Proof of Theorem nfnegd
StepHypRef Expression
1 df-neg 7185 . 2
2 nfcvd 2179 . . 3
3 nfcvd 2179 . . 3
4 nfnegd.1 . . 3
52, 3, 4nfovd 5534 . 2
61, 5nfcxfrd 2176 1
 Colors of variables: wff set class Syntax hints:   wi 4  wnfc 2165  (class class class)co 5512  cc0 6889   cmin 7182  cneg 7183 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rex 2312  df-v 2559  df-un 2922  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-iota 4867  df-fv 4910  df-ov 5515  df-neg 7185 This theorem is referenced by:  nfneg  7208
 Copyright terms: Public domain W3C validator