ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfneg Structured version   Unicode version

Theorem nfneg 6965
Description: Bound-variable hypothesis builder for the negative of a complex number. (Contributed by NM, 12-Jun-2005.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfneg.1  F/_
Assertion
Ref Expression
nfneg  F/_ -u

Proof of Theorem nfneg
StepHypRef Expression
1 nfneg.1 . . . 4  F/_
21a1i 9 . . 3  F/_
32nfnegd 6964 . 2  F/_ -u
43trud 1251 1  F/_ -u
Colors of variables: wff set class
Syntax hints:   wtru 1243   F/_wnfc 2162   -ucneg 6940
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-rex 2306  df-v 2553  df-un 2916  df-sn 3373  df-pr 3374  df-op 3376  df-uni 3572  df-br 3756  df-iota 4810  df-fv 4853  df-ov 5458  df-neg 6942
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator