Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfned | Unicode version |
Description: Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfned.1 | |
nfned.2 |
Ref | Expression |
---|---|
nfned |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2206 | . 2 | |
2 | nfned.1 | . . . 4 | |
3 | nfned.2 | . . . 4 | |
4 | 2, 3 | nfeqd 2192 | . . 3 |
5 | 4 | nfnd 1547 | . 2 |
6 | 1, 5 | nfxfrd 1364 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wceq 1243 wnf 1349 wnfc 2165 wne 2204 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie2 1383 ax-4 1400 ax-17 1419 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-fal 1249 df-nf 1350 df-cleq 2033 df-nfc 2167 df-ne 2206 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |