ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfifd Unicode version

Theorem nfifd 3355
Description: Deduction version of nfif 3356. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
nfifd.2  |-  ( ph  ->  F/ x ps )
nfifd.3  |-  ( ph  -> 
F/_ x A )
nfifd.4  |-  ( ph  -> 
F/_ x B )
Assertion
Ref Expression
nfifd  |-  ( ph  -> 
F/_ x if ( ps ,  A ,  B ) )

Proof of Theorem nfifd
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-if 3332 . 2  |-  if ( ps ,  A ,  B )  =  {
y  |  ( ( y  e.  A  /\  ps )  \/  (
y  e.  B  /\  -.  ps ) ) }
2 nfv 1421 . . 3  |-  F/ y
ph
3 nfifd.3 . . . . . 6  |-  ( ph  -> 
F/_ x A )
43nfcrd 2191 . . . . 5  |-  ( ph  ->  F/ x  y  e.  A )
5 nfifd.2 . . . . 5  |-  ( ph  ->  F/ x ps )
64, 5nfand 1460 . . . 4  |-  ( ph  ->  F/ x ( y  e.  A  /\  ps ) )
7 nfifd.4 . . . . . 6  |-  ( ph  -> 
F/_ x B )
87nfcrd 2191 . . . . 5  |-  ( ph  ->  F/ x  y  e.  B )
95nfnd 1547 . . . . 5  |-  ( ph  ->  F/ x  -.  ps )
108, 9nfand 1460 . . . 4  |-  ( ph  ->  F/ x ( y  e.  B  /\  -.  ps ) )
116, 10nford 1459 . . 3  |-  ( ph  ->  F/ x ( ( y  e.  A  /\  ps )  \/  (
y  e.  B  /\  -.  ps ) ) )
122, 11nfabd 2196 . 2  |-  ( ph  -> 
F/_ x { y  |  ( ( y  e.  A  /\  ps )  \/  ( y  e.  B  /\  -.  ps ) ) } )
131, 12nfcxfrd 2176 1  |-  ( ph  -> 
F/_ x if ( ps ,  A ,  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 97    \/ wo 629   F/wnf 1349    e. wcel 1393   {cab 2026   F/_wnfc 2165   ifcif 3331
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-if 3332
This theorem is referenced by:  nfif  3356
  Copyright terms: Public domain W3C validator