ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfdisj1 Unicode version

Theorem nfdisj1 3758
Description: Bound-variable hypothesis builder for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
nfdisj1  |-  F/ xDisj  x  e.  A  B

Proof of Theorem nfdisj1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-disj 3746 . 2  |-  (Disj  x  e.  A  B  <->  A. y E* x  e.  A  y  e.  B )
2 nfrmo1 2482 . . 3  |-  F/ x E* x  e.  A  y  e.  B
32nfal 1468 . 2  |-  F/ x A. y E* x  e.  A  y  e.  B
41, 3nfxfr 1363 1  |-  F/ xDisj  x  e.  A  B
Colors of variables: wff set class
Syntax hints:   A.wal 1241   F/wnf 1349    e. wcel 1393   E*wrmo 2309  Disj wdisj 3745
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-4 1400  ax-ial 1427  ax-i5r 1428
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-eu 1903  df-mo 1904  df-rmo 2314  df-disj 3746
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator