![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfcri | Unicode version |
Description: Consequence of the
not-free predicate. (Note that unlike nfcr 2167, this
does not require ![]() ![]() |
Ref | Expression |
---|---|
nfcri.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfcri |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcri.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | nfcrii 2168 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | nfi 1348 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 629 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-10 1393 ax-11 1394 ax-i12 1395 ax-bndl 1396 ax-4 1397 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 |
This theorem depends on definitions: df-bi 110 df-nf 1347 df-sb 1643 df-cleq 2030 df-clel 2033 df-nfc 2164 |
This theorem is referenced by: nfnfc 2181 nfeq 2182 nfel 2183 cleqf 2198 sbabel 2200 r2alf 2335 r2exf 2336 nfrabxy 2484 cbvralf 2521 cbvrexf 2522 cbvrab 2549 nfccdeq 2756 sbcabel 2833 cbvcsb 2850 cbvralcsf 2902 cbvrexcsf 2903 cbvreucsf 2904 cbvrabcsf 2905 dfss2f 2930 nfdif 3059 nfun 3093 nfin 3137 nfop 3556 nfiunxy 3674 nfiinxy 3675 nfiunya 3676 nfiinya 3677 cbviun 3685 cbviin 3686 cbvdisj 3746 nfdisjv 3748 nfmpt 3840 tfis 4249 nfxp 4314 opeliunxp 4338 iunxpf 4427 elrnmpt1 4528 fvmptssdm 5198 nfmpt2 5515 cbvmpt2x 5524 fmpt2x 5768 nffrec 5921 |
Copyright terms: Public domain | W3C validator |