![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfal | Unicode version |
Description: If ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfal.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfal |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfal.1 |
. . . 4
![]() ![]() ![]() ![]() | |
2 | 1 | nfri 1412 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | hbal 1366 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | nfi 1351 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-7 1337 ax-gen 1338 ax-4 1400 |
This theorem depends on definitions: df-bi 110 df-nf 1350 |
This theorem is referenced by: nfnf 1469 nfa2 1471 aaan 1479 cbv3 1630 cbv2 1635 nfald 1643 cbval2 1796 nfsb4t 1890 nfeuv 1918 mo23 1941 bm1.1 2025 nfnfc1 2181 nfnfc 2184 nfeq 2185 sbcnestgf 2897 dfnfc2 3598 nfdisjv 3757 nfdisj1 3758 nffr 4086 bdsepnft 10007 bdsepnfALT 10009 setindft 10090 strcollnft 10109 strcollnfALT 10111 |
Copyright terms: Public domain | W3C validator |