ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfabd Structured version   Unicode version

Theorem nfabd 2193
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 8-Oct-2016.)
Hypotheses
Ref Expression
nfabd.1  F/
nfabd.2  F/
Assertion
Ref Expression
nfabd  F/_ {  |  }

Proof of Theorem nfabd
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 nfv 1418 . 2  F/
2 df-clab 2024 . . 3  {  |  }
3 nfabd.1 . . . 4  F/
4 nfabd.2 . . . 4  F/
53, 4nfsbd 1848 . . 3  F/
62, 5nfxfrd 1361 . 2  F/ 
{  |  }
71, 6nfcd 2170 1  F/_ {  |  }
Colors of variables: wff set class
Syntax hints:   wi 4   F/wnf 1346   wcel 1390  wsb 1642   {cab 2023   F/_wnfc 2162
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425
This theorem depends on definitions:  df-bi 110  df-nf 1347  df-sb 1643  df-clab 2024  df-nfc 2164
This theorem is referenced by:  nfsbcd  2777  nfcsb1d  2874  nfcsbd  2877  nfifd  3349  nfunid  3578  nfiotadxy  4813
  Copyright terms: Public domain W3C validator