ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nexdv Unicode version

Theorem nexdv 1811
Description: Deduction for generalization rule for negated wff. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
nexdv.1  |-  ( ph  ->  -.  ps )
Assertion
Ref Expression
nexdv  |-  ( ph  ->  -.  E. x ps )
Distinct variable group:    ph, x
Allowed substitution hint:    ps( x)

Proof of Theorem nexdv
StepHypRef Expression
1 ax-17 1419 . 2  |-  ( ph  ->  A. x ph )
2 nexdv.1 . 2  |-  ( ph  ->  -.  ps )
31, 2nexd 1504 1  |-  ( ph  ->  -.  E. x ps )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   E.wex 1381
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-5 1336  ax-gen 1338  ax-ie2 1383  ax-17 1419
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-fal 1249
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator