ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon3bbid Unicode version

Theorem necon3bbid 2239
Description: Deduction from equality to inequality. (Contributed by NM, 2-Jun-2007.)
Hypothesis
Ref Expression
necon3bbid.1
Assertion
Ref Expression
necon3bbid  =/=

Proof of Theorem necon3bbid
StepHypRef Expression
1 necon3bbid.1 . . . 4
21bicomd 129 . . 3
32necon3abid 2238 . 2  =/=
43bicomd 129 1  =/=
Colors of variables: wff set class
Syntax hints:   wn 3   wi 4   wb 98   wceq 1242    =/= wne 2201
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545
This theorem depends on definitions:  df-bi 110  df-ne 2203
This theorem is referenced by:  necon3bid  2240  eldifsn  3486
  Copyright terms: Public domain W3C validator