Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > necon2bi | Unicode version |
Description: Contrapositive inference for inequality. (Contributed by NM, 1-Apr-2007.) |
Ref | Expression |
---|---|
necon2bi.1 |
Ref | Expression |
---|---|
necon2bi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon2bi.1 | . . 3 | |
2 | 1 | neneqd 2226 | . 2 |
3 | 2 | con2i 557 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wceq 1243 wne 2204 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-in1 544 ax-in2 545 |
This theorem depends on definitions: df-bi 110 df-ne 2206 |
This theorem is referenced by: minel 3283 rzal 3318 difsnb 3506 fin0 6342 0npi 6411 0nsr 6834 renfdisj 7079 nltpnft 8730 ngtmnft 8731 xrrebnd 8732 rennim 9600 |
Copyright terms: Public domain | W3C validator |