Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > necon2bbii | Unicode version |
Description: Contrapositive inference for inequality. (Contributed by Jim Kingdon, 16-May-2018.) |
Ref | Expression |
---|---|
necon2bbii.1 | DECID |
Ref | Expression |
---|---|
necon2bbii | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon2bbii.1 | . . . 4 DECID | |
2 | 1 | bicomd 129 | . . 3 DECID |
3 | 2 | necon1bbiidc 2266 | . 2 DECID |
4 | 3 | bicomd 129 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wb 98 DECID wdc 742 wceq 1243 wne 2204 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 |
This theorem depends on definitions: df-bi 110 df-dc 743 df-ne 2206 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |