ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon2bbii Unicode version

Theorem necon2bbii 2264
Description: Contrapositive inference for inequality. (Contributed by Jim Kingdon, 16-May-2018.)
Hypothesis
Ref Expression
necon2bbii.1 DECID  =/=
Assertion
Ref Expression
necon2bbii DECID

Proof of Theorem necon2bbii
StepHypRef Expression
1 necon2bbii.1 . . . 4 DECID  =/=
21bicomd 129 . . 3 DECID  =/=
32necon1bbiidc 2260 . 2 DECID
43bicomd 129 1 DECID
Colors of variables: wff set class
Syntax hints:   wn 3   wi 4   wb 98  DECID wdc 741   wceq 1242    =/= wne 2201
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629
This theorem depends on definitions:  df-bi 110  df-dc 742  df-ne 2203
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator