Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > necon2ai | Unicode version |
Description: Contrapositive inference for inequality. (Contributed by NM, 16-Jan-2007.) (Proof rewritten by Jim Kingdon, 16-May-2018.) |
Ref | Expression |
---|---|
necon2ai.1 |
Ref | Expression |
---|---|
necon2ai |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon2ai.1 | . . 3 | |
2 | 1 | con2i 557 | . 2 |
3 | df-ne 2206 | . 2 | |
4 | 2, 3 | sylibr 137 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wceq 1243 wne 2204 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 |
This theorem depends on definitions: df-bi 110 df-ne 2206 |
This theorem is referenced by: necon2i 2261 neneqad 2284 intexr 3904 iin0r 3922 tfrlemisucaccv 5939 renepnf 7073 renemnf 7074 lt0ne0d 7505 nnne0 7942 bj-intexr 10028 |
Copyright terms: Public domain | W3C validator |