Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nebidc | Unicode version |
Description: Contraposition law for inequality. (Contributed by Jim Kingdon, 19-May-2018.) |
Ref | Expression |
---|---|
nebidc | DECID DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . . 4 | |
2 | 1 | necon3bid 2246 | . . 3 |
3 | id 19 | . . . . . . . 8 | |
4 | 3 | a1d 22 | . . . . . . 7 DECID |
5 | 4 | a1d 22 | . . . . . 6 DECID DECID |
6 | 5 | necon4biddc 2280 | . . . . 5 DECID DECID |
7 | 6 | com3l 75 | . . . 4 DECID DECID |
8 | 7 | imp 115 | . . 3 DECID DECID |
9 | 2, 8 | impbid2 131 | . 2 DECID DECID |
10 | 9 | ex 108 | 1 DECID DECID |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 wb 98 DECID wdc 742 wceq 1243 wne 2204 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 |
This theorem depends on definitions: df-bi 110 df-dc 743 df-ne 2206 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |