ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcmpblnq Unicode version

Theorem mulcmpblnq 6466
Description: Lemma showing compatibility of multiplication. (Contributed by NM, 27-Aug-1995.)
Assertion
Ref Expression
mulcmpblnq  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( ( A  .N  D )  =  ( B  .N  C )  /\  ( F  .N  S )  =  ( G  .N  R
) )  ->  <. ( A  .N  F ) ,  ( B  .N  G
) >.  ~Q  <. ( C  .N  R ) ,  ( D  .N  S
) >. ) )

Proof of Theorem mulcmpblnq
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 5521 . 2  |-  ( ( ( A  .N  D
)  =  ( B  .N  C )  /\  ( F  .N  S
)  =  ( G  .N  R ) )  ->  ( ( A  .N  D )  .N  ( F  .N  S
) )  =  ( ( B  .N  C
)  .N  ( G  .N  R ) ) )
2 mulclpi 6426 . . . . . . . 8  |-  ( ( A  e.  N.  /\  F  e.  N. )  ->  ( A  .N  F
)  e.  N. )
3 mulclpi 6426 . . . . . . . 8  |-  ( ( B  e.  N.  /\  G  e.  N. )  ->  ( B  .N  G
)  e.  N. )
42, 3anim12i 321 . . . . . . 7  |-  ( ( ( A  e.  N.  /\  F  e.  N. )  /\  ( B  e.  N.  /\  G  e.  N. )
)  ->  ( ( A  .N  F )  e. 
N.  /\  ( B  .N  G )  e.  N. ) )
54an4s 522 . . . . . 6  |-  ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( F  e.  N.  /\  G  e.  N. )
)  ->  ( ( A  .N  F )  e. 
N.  /\  ( B  .N  G )  e.  N. ) )
6 mulclpi 6426 . . . . . . . 8  |-  ( ( C  e.  N.  /\  R  e.  N. )  ->  ( C  .N  R
)  e.  N. )
7 mulclpi 6426 . . . . . . . 8  |-  ( ( D  e.  N.  /\  S  e.  N. )  ->  ( D  .N  S
)  e.  N. )
86, 7anim12i 321 . . . . . . 7  |-  ( ( ( C  e.  N.  /\  R  e.  N. )  /\  ( D  e.  N.  /\  S  e.  N. )
)  ->  ( ( C  .N  R )  e. 
N.  /\  ( D  .N  S )  e.  N. ) )
98an4s 522 . . . . . 6  |-  ( ( ( C  e.  N.  /\  D  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. )
)  ->  ( ( C  .N  R )  e. 
N.  /\  ( D  .N  S )  e.  N. ) )
105, 9anim12i 321 . . . . 5  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( F  e.  N.  /\  G  e.  N. ) )  /\  ( ( C  e. 
N.  /\  D  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( ( A  .N  F )  e.  N.  /\  ( B  .N  G )  e. 
N. )  /\  (
( C  .N  R
)  e.  N.  /\  ( D  .N  S
)  e.  N. )
) )
1110an4s 522 . . . 4  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( ( A  .N  F )  e.  N.  /\  ( B  .N  G )  e. 
N. )  /\  (
( C  .N  R
)  e.  N.  /\  ( D  .N  S
)  e.  N. )
) )
12 enqbreq 6454 . . . 4  |-  ( ( ( ( A  .N  F )  e.  N.  /\  ( B  .N  G
)  e.  N. )  /\  ( ( C  .N  R )  e.  N.  /\  ( D  .N  S
)  e.  N. )
)  ->  ( <. ( A  .N  F ) ,  ( B  .N  G ) >.  ~Q  <. ( C  .N  R ) ,  ( D  .N  S ) >.  <->  ( ( A  .N  F )  .N  ( D  .N  S
) )  =  ( ( B  .N  G
)  .N  ( C  .N  R ) ) ) )
1311, 12syl 14 . . 3  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( <. ( A  .N  F ) ,  ( B  .N  G
) >.  ~Q  <. ( C  .N  R ) ,  ( D  .N  S
) >. 
<->  ( ( A  .N  F )  .N  ( D  .N  S ) )  =  ( ( B  .N  G )  .N  ( C  .N  R
) ) ) )
14 simplll 485 . . . . 5  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  A  e.  N. )
15 simprll 489 . . . . 5  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  F  e.  N. )
16 simplrr 488 . . . . 5  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  D  e.  N. )
17 mulcompig 6429 . . . . . 6  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( x  .N  y
)  =  ( y  .N  x ) )
1817adantl 262 . . . . 5  |-  ( ( ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  /\  ( x  e. 
N.  /\  y  e.  N. ) )  ->  (
x  .N  y )  =  ( y  .N  x ) )
19 mulasspig 6430 . . . . . 6  |-  ( ( x  e.  N.  /\  y  e.  N.  /\  z  e.  N. )  ->  (
( x  .N  y
)  .N  z )  =  ( x  .N  ( y  .N  z
) ) )
2019adantl 262 . . . . 5  |-  ( ( ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  /\  ( x  e. 
N.  /\  y  e.  N.  /\  z  e.  N. ) )  ->  (
( x  .N  y
)  .N  z )  =  ( x  .N  ( y  .N  z
) ) )
21 simprrr 492 . . . . 5  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  S  e.  N. )
22 mulclpi 6426 . . . . . 6  |-  ( ( x  e.  N.  /\  y  e.  N. )  ->  ( x  .N  y
)  e.  N. )
2322adantl 262 . . . . 5  |-  ( ( ( ( ( A  e.  N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  /\  ( x  e. 
N.  /\  y  e.  N. ) )  ->  (
x  .N  y )  e.  N. )
2414, 15, 16, 18, 20, 21, 23caov4d 5685 . . . 4  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( A  .N  F )  .N  ( D  .N  S
) )  =  ( ( A  .N  D
)  .N  ( F  .N  S ) ) )
25 simpllr 486 . . . . 5  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  B  e.  N. )
26 simprlr 490 . . . . 5  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  G  e.  N. )
27 simplrl 487 . . . . 5  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  C  e.  N. )
28 simprrl 491 . . . . 5  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  R  e.  N. )
2925, 26, 27, 18, 20, 28, 23caov4d 5685 . . . 4  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( B  .N  G )  .N  ( C  .N  R
) )  =  ( ( B  .N  C
)  .N  ( G  .N  R ) ) )
3024, 29eqeq12d 2054 . . 3  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( ( A  .N  F )  .N  ( D  .N  S ) )  =  ( ( B  .N  G )  .N  ( C  .N  R ) )  <-> 
( ( A  .N  D )  .N  ( F  .N  S ) )  =  ( ( B  .N  C )  .N  ( G  .N  R
) ) ) )
3113, 30bitrd 177 . 2  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( <. ( A  .N  F ) ,  ( B  .N  G
) >.  ~Q  <. ( C  .N  R ) ,  ( D  .N  S
) >. 
<->  ( ( A  .N  D )  .N  ( F  .N  S ) )  =  ( ( B  .N  C )  .N  ( G  .N  R
) ) ) )
321, 31syl5ibr 145 1  |-  ( ( ( ( A  e. 
N.  /\  B  e.  N. )  /\  ( C  e.  N.  /\  D  e.  N. ) )  /\  ( ( F  e. 
N.  /\  G  e.  N. )  /\  ( R  e.  N.  /\  S  e.  N. ) ) )  ->  ( ( ( A  .N  D )  =  ( B  .N  C )  /\  ( F  .N  S )  =  ( G  .N  R
) )  ->  <. ( A  .N  F ) ,  ( B  .N  G
) >.  ~Q  <. ( C  .N  R ) ,  ( D  .N  S
) >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    /\ w3a 885    = wceq 1243    e. wcel 1393   <.cop 3378   class class class wbr 3764  (class class class)co 5512   N.cnpi 6370    .N cmi 6372    ~Q ceq 6377
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-oadd 6005  df-omul 6006  df-ni 6402  df-mi 6404  df-enq 6445
This theorem is referenced by:  mulpipqqs  6471
  Copyright terms: Public domain W3C validator