| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mtbid | Unicode version | ||
| Description: A deduction from a biconditional, similar to modus tollens. (Contributed by NM, 26-Nov-1995.) |
| Ref | Expression |
|---|---|
| mtbid.min |
|
| mtbid.maj |
|
| Ref | Expression |
|---|---|
| mtbid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtbid.min |
. 2
| |
| 2 | mtbid.maj |
. . 3
| |
| 3 | 2 | biimprd 147 |
. 2
|
| 4 | 1, 3 | mtod 589 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 |
| This theorem depends on definitions: df-bi 110 |
| This theorem is referenced by: sylnib 601 eqneltrrd 2134 neleqtrd 2135 eueq3dc 2715 efrirr 4090 nqnq0pi 6536 zdclt 8318 frec2uzf1od 9192 expnegap0 9263 |
| Copyright terms: Public domain | W3C validator |