ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mosubt Unicode version

Theorem mosubt 2718
Description: "At most one" remains true after substitution. (Contributed by Jim Kingdon, 18-Jan-2019.)
Assertion
Ref Expression
mosubt  |-  ( A. y E* x ph  ->  E* x E. y ( y  =  A  /\  ph ) )
Distinct variable group:    x, y, A
Allowed substitution hints:    ph( x, y)

Proof of Theorem mosubt
StepHypRef Expression
1 eueq 2712 . . . . . 6  |-  ( A  e.  _V  <->  E! y 
y  =  A )
2 isset 2561 . . . . . 6  |-  ( A  e.  _V  <->  E. y 
y  =  A )
31, 2bitr3i 175 . . . . 5  |-  ( E! y  y  =  A  <->  E. y  y  =  A )
4 nfv 1421 . . . . . 6  |-  F/ x  y  =  A
54euexex 1985 . . . . 5  |-  ( ( E! y  y  =  A  /\  A. y E* x ph )  ->  E* x E. y ( y  =  A  /\  ph ) )
63, 5sylanbr 269 . . . 4  |-  ( ( E. y  y  =  A  /\  A. y E* x ph )  ->  E* x E. y ( y  =  A  /\  ph ) )
76expcom 109 . . 3  |-  ( A. y E* x ph  ->  ( E. y  y  =  A  ->  E* x E. y ( y  =  A  /\  ph )
) )
8 moanimv 1975 . . 3  |-  ( E* x ( E. y 
y  =  A  /\  E. y ( y  =  A  /\  ph )
)  <->  ( E. y 
y  =  A  ->  E* x E. y ( y  =  A  /\  ph ) ) )
97, 8sylibr 137 . 2  |-  ( A. y E* x ph  ->  E* x ( E. y 
y  =  A  /\  E. y ( y  =  A  /\  ph )
) )
10 simpl 102 . . . . 5  |-  ( ( y  =  A  /\  ph )  ->  y  =  A )
1110eximi 1491 . . . 4  |-  ( E. y ( y  =  A  /\  ph )  ->  E. y  y  =  A )
1211ancri 307 . . 3  |-  ( E. y ( y  =  A  /\  ph )  ->  ( E. y  y  =  A  /\  E. y ( y  =  A  /\  ph )
) )
1312moimi 1965 . 2  |-  ( E* x ( E. y 
y  =  A  /\  E. y ( y  =  A  /\  ph )
)  ->  E* x E. y ( y  =  A  /\  ph )
)
149, 13syl 14 1  |-  ( A. y E* x ph  ->  E* x E. y ( y  =  A  /\  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97   A.wal 1241    = wceq 1243   E.wex 1381    e. wcel 1393   E!weu 1900   E*wmo 1901   _Vcvv 2557
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-v 2559
This theorem is referenced by:  mosub  2719
  Copyright terms: Public domain W3C validator