ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mosubopt Unicode version

Theorem mosubopt 4405
Description: "At most one" remains true inside ordered pair quantification. (Contributed by NM, 28-Aug-2007.)
Assertion
Ref Expression
mosubopt  |-  ( A. y A. z E* x ph  ->  E* x E. y E. z ( A  =  <. y ,  z
>.  /\  ph ) )
Distinct variable group:    x, y, z, A
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem mosubopt
StepHypRef Expression
1 nfa1 1434 . . 3  |-  F/ y A. y A. z E* x ph
2 nfe1 1385 . . . 4  |-  F/ y E. y E. z
( A  =  <. y ,  z >.  /\  ph )
32nfmo 1920 . . 3  |-  F/ y E* x E. y E. z ( A  = 
<. y ,  z >.  /\  ph )
4 nfa1 1434 . . . . 5  |-  F/ z A. z E* x ph
5 nfe1 1385 . . . . . . 7  |-  F/ z E. z ( A  =  <. y ,  z
>.  /\  ph )
65nfex 1528 . . . . . 6  |-  F/ z E. y E. z
( A  =  <. y ,  z >.  /\  ph )
76nfmo 1920 . . . . 5  |-  F/ z E* x E. y E. z ( A  = 
<. y ,  z >.  /\  ph )
8 copsexg 3981 . . . . . . . 8  |-  ( A  =  <. y ,  z
>.  ->  ( ph  <->  E. y E. z ( A  = 
<. y ,  z >.  /\  ph ) ) )
98mobidv 1936 . . . . . . 7  |-  ( A  =  <. y ,  z
>.  ->  ( E* x ph 
<->  E* x E. y E. z ( A  = 
<. y ,  z >.  /\  ph ) ) )
109biimpcd 148 . . . . . 6  |-  ( E* x ph  ->  ( A  =  <. y ,  z >.  ->  E* x E. y E. z ( A  =  <. y ,  z >.  /\  ph ) ) )
1110sps 1430 . . . . 5  |-  ( A. z E* x ph  ->  ( A  =  <. y ,  z >.  ->  E* x E. y E. z
( A  =  <. y ,  z >.  /\  ph ) ) )
124, 7, 11exlimd 1488 . . . 4  |-  ( A. z E* x ph  ->  ( E. z  A  = 
<. y ,  z >.  ->  E* x E. y E. z ( A  = 
<. y ,  z >.  /\  ph ) ) )
1312sps 1430 . . 3  |-  ( A. y A. z E* x ph  ->  ( E. z  A  =  <. y ,  z >.  ->  E* x E. y E. z ( A  =  <. y ,  z >.  /\  ph ) ) )
141, 3, 13exlimd 1488 . 2  |-  ( A. y A. z E* x ph  ->  ( E. y E. z  A  =  <. y ,  z >.  ->  E* x E. y E. z ( A  = 
<. y ,  z >.  /\  ph ) ) )
15 moanimv 1975 . . 3  |-  ( E* x ( E. y E. z  A  =  <. y ,  z >.  /\  E. y E. z
( A  =  <. y ,  z >.  /\  ph ) )  <->  ( E. y E. z  A  = 
<. y ,  z >.  ->  E* x E. y E. z ( A  = 
<. y ,  z >.  /\  ph ) ) )
16 simpl 102 . . . . . 6  |-  ( ( A  =  <. y ,  z >.  /\  ph )  ->  A  =  <. y ,  z >. )
17162eximi 1492 . . . . 5  |-  ( E. y E. z ( A  =  <. y ,  z >.  /\  ph )  ->  E. y E. z  A  =  <. y ,  z >. )
1817ancri 307 . . . 4  |-  ( E. y E. z ( A  =  <. y ,  z >.  /\  ph )  ->  ( E. y E. z  A  =  <. y ,  z >.  /\  E. y E. z
( A  =  <. y ,  z >.  /\  ph ) ) )
1918moimi 1965 . . 3  |-  ( E* x ( E. y E. z  A  =  <. y ,  z >.  /\  E. y E. z
( A  =  <. y ,  z >.  /\  ph ) )  ->  E* x E. y E. z
( A  =  <. y ,  z >.  /\  ph ) )
2015, 19sylbir 125 . 2  |-  ( ( E. y E. z  A  =  <. y ,  z >.  ->  E* x E. y E. z ( A  =  <. y ,  z >.  /\  ph ) )  ->  E* x E. y E. z
( A  =  <. y ,  z >.  /\  ph ) )
2114, 20syl 14 1  |-  ( A. y A. z E* x ph  ->  E* x E. y E. z ( A  =  <. y ,  z
>.  /\  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97   A.wal 1241    = wceq 1243   E.wex 1381   E*wmo 1901   <.cop 3378
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384
This theorem is referenced by:  mosubop  4406  funoprabg  5600
  Copyright terms: Public domain W3C validator