ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltne Unicode version

Theorem ltne 7103
Description: 'Less than' implies not equal. See also ltap 7622 which is the same but for apartness. (Contributed by NM, 9-Oct-1999.) (Revised by Mario Carneiro, 16-Sep-2015.)
Assertion
Ref Expression
ltne  |-  ( ( A  e.  RR  /\  A  <  B )  ->  B  =/=  A )

Proof of Theorem ltne
StepHypRef Expression
1 ltnr 7095 . . . 4  |-  ( A  e.  RR  ->  -.  A  <  A )
2 breq2 3768 . . . . 5  |-  ( B  =  A  ->  ( A  <  B  <->  A  <  A ) )
32notbid 592 . . . 4  |-  ( B  =  A  ->  ( -.  A  <  B  <->  -.  A  <  A ) )
41, 3syl5ibrcom 146 . . 3  |-  ( A  e.  RR  ->  ( B  =  A  ->  -.  A  <  B ) )
54necon2ad 2262 . 2  |-  ( A  e.  RR  ->  ( A  <  B  ->  B  =/=  A ) )
65imp 115 1  |-  ( ( A  e.  RR  /\  A  <  B )  ->  B  =/=  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 97    = wceq 1243    e. wcel 1393    =/= wne 2204   class class class wbr 3764   RRcr 6888    < clt 7060
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-cnex 6975  ax-resscn 6976  ax-pre-ltirr 6996
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-xp 4351  df-pnf 7062  df-mnf 7063  df-ltxr 7065
This theorem is referenced by:  gtneii  7113  ltnei  7121  gtned  7130  gt0ne0  7422  lt0ne0  7423  gt0ne0d  7504  nngt1ne1  7948  zdceq  8316  qdceq  9102
  Copyright terms: Public domain W3C validator