ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltmul1 Unicode version

Theorem ltmul1 7583
Description: Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 13-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
ltmul1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <  B  <->  ( A  x.  C )  <  ( B  x.  C ) ) )

Proof of Theorem ltmul1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ltmul1a 7582 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  A  < 
B )  ->  ( A  x.  C )  <  ( B  x.  C
) )
21ex 108 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <  B  ->  ( A  x.  C
)  <  ( B  x.  C ) ) )
3 recexgt0 7571 . . . 4  |-  ( ( C  e.  RR  /\  0  <  C )  ->  E. x  e.  RR  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) )
433ad2ant3 927 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  E. x  e.  RR  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) )
5 simpl1 907 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  A  e.  RR )
6 simpl3l 959 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  C  e.  RR )
75, 6remulcld 7056 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  ( A  x.  C )  e.  RR )
8 simpl2 908 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  B  e.  RR )
98, 6remulcld 7056 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  ( B  x.  C )  e.  RR )
10 simprl 483 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  x  e.  RR )
11 simprrl 491 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  0  <  x )
1210, 11jca 290 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  (
x  e.  RR  /\  0  <  x ) )
137, 9, 123jca 1084 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  (
( A  x.  C
)  e.  RR  /\  ( B  x.  C
)  e.  RR  /\  ( x  e.  RR  /\  0  <  x ) ) )
14 ltmul1a 7582 . . . . . . . 8  |-  ( ( ( ( A  x.  C )  e.  RR  /\  ( B  x.  C
)  e.  RR  /\  ( x  e.  RR  /\  0  <  x ) )  /\  ( A  x.  C )  < 
( B  x.  C
) )  ->  (
( A  x.  C
)  x.  x )  <  ( ( B  x.  C )  x.  x ) )
1513, 14sylan 267 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  (
( A  x.  C
)  x.  x )  <  ( ( B  x.  C )  x.  x ) )
165recnd 7054 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  A  e.  CC )
1716adantr 261 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  A  e.  CC )
186recnd 7054 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  C  e.  CC )
1918adantr 261 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  C  e.  CC )
2010recnd 7054 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  x  e.  CC )
2120adantr 261 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  x  e.  CC )
2217, 19, 21mulassd 7050 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  (
( A  x.  C
)  x.  x )  =  ( A  x.  ( C  x.  x
) ) )
238recnd 7054 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  B  e.  CC )
2423adantr 261 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  B  e.  CC )
2524, 19, 21mulassd 7050 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  (
( B  x.  C
)  x.  x )  =  ( B  x.  ( C  x.  x
) ) )
2615, 22, 253brtr3d 3793 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  ( A  x.  ( C  x.  x ) )  < 
( B  x.  ( C  x.  x )
) )
27 simprrr 492 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  ( C  x.  x )  =  1 )
2827adantr 261 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  ( C  x.  x )  =  1 )
2928oveq2d 5528 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  ( A  x.  ( C  x.  x ) )  =  ( A  x.  1 ) )
3028oveq2d 5528 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  ( B  x.  ( C  x.  x ) )  =  ( B  x.  1 ) )
3126, 29, 303brtr3d 3793 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  ( A  x.  1 )  <  ( B  x.  1 ) )
3217mulid1d 7044 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  ( A  x.  1 )  =  A )
3324mulid1d 7044 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  ( B  x.  1 )  =  B )
3431, 32, 333brtr3d 3793 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  ( 0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  /\  ( A  x.  C )  <  ( B  x.  C
) )  ->  A  <  B )
3534ex 108 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  /\  ( x  e.  RR  /\  (
0  <  x  /\  ( C  x.  x
)  =  1 ) ) )  ->  (
( A  x.  C
)  <  ( B  x.  C )  ->  A  <  B ) )
364, 35rexlimddv 2437 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( ( A  x.  C )  <  ( B  x.  C )  ->  A  <  B ) )
372, 36impbid 120 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <  B  <->  ( A  x.  C )  <  ( B  x.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    /\ w3a 885    = wceq 1243    e. wcel 1393   E.wrex 2307   class class class wbr 3764  (class class class)co 5512   CCcc 6887   RRcr 6888   0cc0 6889   1c1 6890    x. cmul 6894    < clt 7060
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-mulrcl 6983  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-mulass 6987  ax-distr 6988  ax-i2m1 6989  ax-1rid 6991  ax-0id 6992  ax-rnegex 6993  ax-precex 6994  ax-cnre 6995  ax-pre-ltadd 7000  ax-pre-mulgt0 7001
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-iota 4867  df-fun 4904  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-pnf 7062  df-mnf 7063  df-ltxr 7065  df-sub 7184  df-neg 7185
This theorem is referenced by:  lemul1  7584  reapmul1lem  7585  ltmul2  7822  ltdiv1  7834  ltdiv23  7858  recp1lt1  7865  ltmul1i  7886  ltmul1d  8664
  Copyright terms: Public domain W3C validator