ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltaddpos Unicode version

Theorem ltaddpos 7447
Description: Adding a positive number to another number increases it. (Contributed by NM, 17-Nov-2004.)
Assertion
Ref Expression
ltaddpos  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  <  A  <->  B  <  ( B  +  A ) ) )

Proof of Theorem ltaddpos
StepHypRef Expression
1 0re 7027 . . 3  |-  0  e.  RR
2 ltadd2 7416 . . 3  |-  ( ( 0  e.  RR  /\  A  e.  RR  /\  B  e.  RR )  ->  (
0  <  A  <->  ( B  +  0 )  < 
( B  +  A
) ) )
31, 2mp3an1 1219 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  <  A  <->  ( B  +  0 )  <  ( B  +  A ) ) )
4 recn 7014 . . . . 5  |-  ( B  e.  RR  ->  B  e.  CC )
54addid1d 7162 . . . 4  |-  ( B  e.  RR  ->  ( B  +  0 )  =  B )
65adantl 262 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( B  +  0 )  =  B )
76breq1d 3774 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( B  + 
0 )  <  ( B  +  A )  <->  B  <  ( B  +  A ) ) )
83, 7bitrd 177 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  <  A  <->  B  <  ( B  +  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243    e. wcel 1393   class class class wbr 3764  (class class class)co 5512   RRcr 6888   0cc0 6889    + caddc 6892    < clt 7060
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-addcom 6984  ax-addass 6986  ax-i2m1 6989  ax-0id 6992  ax-rnegex 6993  ax-pre-ltadd 7000
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-xp 4351  df-iota 4867  df-fv 4910  df-ov 5515  df-pnf 7062  df-mnf 7063  df-ltxr 7065
This theorem is referenced by:  ltaddpos2  7448  ltsubpos  7449  posdif  7450  ltaddposi  7489  ltaddposd  7520  ltp1  7810  recreclt  7866  ltaddrp  8618
  Copyright terms: Public domain W3C validator