ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltadd2 Unicode version

Theorem ltadd2 7416
Description: Addition to both sides of 'less than'. (Contributed by NM, 12-Nov-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
ltadd2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  <->  ( C  +  A )  <  ( C  +  B )
) )

Proof of Theorem ltadd2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 axltadd 7089 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  ->  ( C  +  A )  <  ( C  +  B
) ) )
2 ax-rnegex 6993 . . . 4  |-  ( C  e.  RR  ->  E. x  e.  RR  ( C  +  x )  =  0 )
323ad2ant3 927 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  E. x  e.  RR  ( C  +  x )  =  0 )
4 simpl3 909 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  C  e.  RR )
5 simpl1 907 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  A  e.  RR )
64, 5readdcld 7055 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( C  +  A )  e.  RR )
7 simpl2 908 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  B  e.  RR )
84, 7readdcld 7055 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( C  +  B )  e.  RR )
9 simprl 483 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  x  e.  RR )
10 axltadd 7089 . . . . . 6  |-  ( ( ( C  +  A
)  e.  RR  /\  ( C  +  B
)  e.  RR  /\  x  e.  RR )  ->  ( ( C  +  A )  <  ( C  +  B )  ->  ( x  +  ( C  +  A ) )  <  ( x  +  ( C  +  B ) ) ) )
116, 8, 9, 10syl3anc 1135 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( ( C  +  A )  <  ( C  +  B
)  ->  ( x  +  ( C  +  A ) )  < 
( x  +  ( C  +  B ) ) ) )
129recnd 7054 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  x  e.  CC )
134recnd 7054 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  C  e.  CC )
145recnd 7054 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  A  e.  CC )
1512, 13, 14addassd 7049 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( (
x  +  C )  +  A )  =  ( x  +  ( C  +  A ) ) )
167recnd 7054 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  B  e.  CC )
1712, 13, 16addassd 7049 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( (
x  +  C )  +  B )  =  ( x  +  ( C  +  B ) ) )
1815, 17breq12d 3777 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( (
( x  +  C
)  +  A )  <  ( ( x  +  C )  +  B )  <->  ( x  +  ( C  +  A ) )  < 
( x  +  ( C  +  B ) ) ) )
1911, 18sylibrd 158 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( ( C  +  A )  <  ( C  +  B
)  ->  ( (
x  +  C )  +  A )  < 
( ( x  +  C )  +  B
) ) )
20 simprr 484 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( C  +  x )  =  0 )
21 addcom 7150 . . . . . . . . . 10  |-  ( ( C  e.  CC  /\  x  e.  CC )  ->  ( C  +  x
)  =  ( x  +  C ) )
2221eqeq1d 2048 . . . . . . . . 9  |-  ( ( C  e.  CC  /\  x  e.  CC )  ->  ( ( C  +  x )  =  0  <-> 
( x  +  C
)  =  0 ) )
2313, 12, 22syl2anc 391 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( ( C  +  x )  =  0  <->  ( x  +  C )  =  0 ) )
2420, 23mpbid 135 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( x  +  C )  =  0 )
2524oveq1d 5527 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( (
x  +  C )  +  A )  =  ( 0  +  A
) )
2614addid2d 7163 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( 0  +  A )  =  A )
2725, 26eqtrd 2072 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( (
x  +  C )  +  A )  =  A )
2824oveq1d 5527 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( (
x  +  C )  +  B )  =  ( 0  +  B
) )
2916addid2d 7163 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( 0  +  B )  =  B )
3028, 29eqtrd 2072 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( (
x  +  C )  +  B )  =  B )
3127, 30breq12d 3777 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( (
( x  +  C
)  +  A )  <  ( ( x  +  C )  +  B )  <->  A  <  B ) )
3219, 31sylibd 138 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( ( C  +  A )  <  ( C  +  B
)  ->  A  <  B ) )
333, 32rexlimddv 2437 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( C  +  A
)  <  ( C  +  B )  ->  A  <  B ) )
341, 33impbid 120 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <  B  <->  ( C  +  A )  <  ( C  +  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    /\ w3a 885    = wceq 1243    e. wcel 1393   E.wrex 2307   class class class wbr 3764  (class class class)co 5512   CCcc 6887   RRcr 6888   0cc0 6889    + caddc 6892    < clt 7060
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-addcom 6984  ax-addass 6986  ax-i2m1 6989  ax-0id 6992  ax-rnegex 6993  ax-pre-ltadd 7000
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-xp 4351  df-iota 4867  df-fv 4910  df-ov 5515  df-pnf 7062  df-mnf 7063  df-ltxr 7065
This theorem is referenced by:  ltadd2i  7417  ltadd2d  7418  ltadd1  7424  ltaddpos  7447  ltsub2  7454  ltaddsublt  7562  avglt1  8163  flqbi2  9133
  Copyright terms: Public domain W3C validator