ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  looinvdc Unicode version

Theorem looinvdc 821
Description: The Inversion Axiom of the infinite-valued sentential logic (L-infinity) of Lukasiewicz, but where one of the propositions is decidable. Using dfor2dc 794, we can see that this expresses "disjunction commutes." Theorem *2.69 of [WhiteheadRussell] p. 108 (plus the decidability condition). (Contributed by NM, 12-Aug-2004.)
Assertion
Ref Expression
looinvdc  |-  (DECID  ph  ->  ( ( ( ph  ->  ps )  ->  ps )  ->  ( ( ps  ->  ph )  ->  ph ) ) )

Proof of Theorem looinvdc
StepHypRef Expression
1 imim1 70 . 2  |-  ( ( ( ph  ->  ps )  ->  ps )  -> 
( ( ps  ->  ph )  ->  ( ( ph  ->  ps )  ->  ph ) ) )
2 peircedc 820 . 2  |-  (DECID  ph  ->  ( ( ( ph  ->  ps )  ->  ph )  ->  ph ) )
31, 2syl9r 67 1  |-  (DECID  ph  ->  ( ( ( ph  ->  ps )  ->  ps )  ->  ( ( ps  ->  ph )  ->  ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4  DECID wdc 742
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in2 545  ax-io 630
This theorem depends on definitions:  df-bi 110  df-dc 743
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator