Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lelttrd | Unicode version |
Description: Transitive law deduction for 'less than or equal to', 'less than'. (Contributed by NM, 8-Jan-2006.) |
Ref | Expression |
---|---|
ltd.1 | |
ltd.2 | |
letrd.3 | |
lelttrd.4 | |
lelttrd.5 |
Ref | Expression |
---|---|
lelttrd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lelttrd.4 | . 2 | |
2 | lelttrd.5 | . 2 | |
3 | ltd.1 | . . 3 | |
4 | ltd.2 | . . 3 | |
5 | letrd.3 | . . 3 | |
6 | lelttr 7106 | . . 3 | |
7 | 3, 4, 5, 6 | syl3anc 1135 | . 2 |
8 | 1, 2, 7 | mp2and 409 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 wcel 1393 class class class wbr 3764 cr 6888 clt 7060 cle 7061 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 ax-un 4170 ax-setind 4262 ax-cnex 6975 ax-resscn 6976 ax-pre-ltwlin 6997 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-nel 2207 df-ral 2311 df-rex 2312 df-rab 2315 df-v 2559 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-opab 3819 df-xp 4351 df-cnv 4353 df-pnf 7062 df-mnf 7063 df-xr 7064 df-ltxr 7065 df-le 7066 |
This theorem is referenced by: lt2msq1 7851 ledivp1 7869 ge0p1rp 8614 elfzolt3 9013 qbtwnz 9106 btwnzge0 9142 flltdivnn0lt 9146 resqrexlemover 9608 resqrexlemnm 9616 resqrexlemcvg 9617 resqrexlemglsq 9620 resqrexlemga 9621 abslt 9684 abs3lem 9707 fzomaxdiflem 9708 icodiamlt 9776 qdencn 10124 |
Copyright terms: Public domain | W3C validator |