ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jctild Structured version   Unicode version

Theorem jctild 299
Description: Deduction conjoining a theorem to left of consequent in an implication. (Contributed by NM, 21-Apr-2005.)
Hypotheses
Ref Expression
jctild.1
jctild.2
Assertion
Ref Expression
jctild

Proof of Theorem jctild
StepHypRef Expression
1 jctild.2 . . 3
21a1d 22 . 2
3 jctild.1 . 2
42, 3jcad 291 1
Colors of variables: wff set class
Syntax hints:   wi 4   wa 97
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia3 101
This theorem is referenced by:  anc2li  312  syl6an  1320  poxp  5794  aptiprleml  6611  zmulcl  8073
  Copyright terms: Public domain W3C validator