ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iununir Unicode version

Theorem iununir 3738
Description: A relationship involving union and indexed union. Exercise 25 of [Enderton] p. 33 but with biconditional changed to implication. (Contributed by Jim Kingdon, 19-Aug-2018.)
Assertion
Ref Expression
iununir  |-  ( ( A  u.  U. B
)  =  U_ x  e.  B  ( A  u.  x )  ->  ( B  =  (/)  ->  A  =  (/) ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem iununir
StepHypRef Expression
1 unieq 3589 . . . . . 6  |-  ( B  =  (/)  ->  U. B  =  U. (/) )
2 uni0 3607 . . . . . 6  |-  U. (/)  =  (/)
31, 2syl6eq 2088 . . . . 5  |-  ( B  =  (/)  ->  U. B  =  (/) )
43uneq2d 3097 . . . 4  |-  ( B  =  (/)  ->  ( A  u.  U. B )  =  ( A  u.  (/) ) )
5 un0 3251 . . . 4  |-  ( A  u.  (/) )  =  A
64, 5syl6eq 2088 . . 3  |-  ( B  =  (/)  ->  ( A  u.  U. B )  =  A )
7 iuneq1 3670 . . . 4  |-  ( B  =  (/)  ->  U_ x  e.  B  ( A  u.  x )  =  U_ x  e.  (/)  ( A  u.  x ) )
8 0iun 3714 . . . 4  |-  U_ x  e.  (/)  ( A  u.  x )  =  (/)
97, 8syl6eq 2088 . . 3  |-  ( B  =  (/)  ->  U_ x  e.  B  ( A  u.  x )  =  (/) )
106, 9eqeq12d 2054 . 2  |-  ( B  =  (/)  ->  ( ( A  u.  U. B
)  =  U_ x  e.  B  ( A  u.  x )  <->  A  =  (/) ) )
1110biimpcd 148 1  |-  ( ( A  u.  U. B
)  =  U_ x  e.  B  ( A  u.  x )  ->  ( B  =  (/)  ->  A  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1243    u. cun 2915   (/)c0 3224   U.cuni 3580   U_ciun 3657
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-sn 3381  df-uni 3581  df-iun 3659
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator