ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunun Unicode version

Theorem iunun 3734
Description: Separate a union in an indexed union. (Contributed by NM, 27-Dec-2004.) (Proof shortened by Mario Carneiro, 17-Nov-2016.)
Assertion
Ref Expression
iunun  |-  U_ x  e.  A  ( B  u.  C )  =  (
U_ x  e.  A  B  u.  U_ x  e.  A  C )

Proof of Theorem iunun
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 r19.43 2468 . . . 4  |-  ( E. x  e.  A  ( y  e.  B  \/  y  e.  C )  <->  ( E. x  e.  A  y  e.  B  \/  E. x  e.  A  y  e.  C ) )
2 elun 3084 . . . . 5  |-  ( y  e.  ( B  u.  C )  <->  ( y  e.  B  \/  y  e.  C ) )
32rexbii 2331 . . . 4  |-  ( E. x  e.  A  y  e.  ( B  u.  C )  <->  E. x  e.  A  ( y  e.  B  \/  y  e.  C ) )
4 eliun 3661 . . . . 5  |-  ( y  e.  U_ x  e.  A  B  <->  E. x  e.  A  y  e.  B )
5 eliun 3661 . . . . 5  |-  ( y  e.  U_ x  e.  A  C  <->  E. x  e.  A  y  e.  C )
64, 5orbi12i 681 . . . 4  |-  ( ( y  e.  U_ x  e.  A  B  \/  y  e.  U_ x  e.  A  C )  <->  ( E. x  e.  A  y  e.  B  \/  E. x  e.  A  y  e.  C ) )
71, 3, 63bitr4i 201 . . 3  |-  ( E. x  e.  A  y  e.  ( B  u.  C )  <->  ( y  e.  U_ x  e.  A  B  \/  y  e.  U_ x  e.  A  C
) )
8 eliun 3661 . . 3  |-  ( y  e.  U_ x  e.  A  ( B  u.  C )  <->  E. x  e.  A  y  e.  ( B  u.  C
) )
9 elun 3084 . . 3  |-  ( y  e.  ( U_ x  e.  A  B  u.  U_ x  e.  A  C
)  <->  ( y  e. 
U_ x  e.  A  B  \/  y  e.  U_ x  e.  A  C
) )
107, 8, 93bitr4i 201 . 2  |-  ( y  e.  U_ x  e.  A  ( B  u.  C )  <->  y  e.  ( U_ x  e.  A  B  u.  U_ x  e.  A  C ) )
1110eqriv 2037 1  |-  U_ x  e.  A  ( B  u.  C )  =  (
U_ x  e.  A  B  u.  U_ x  e.  A  C )
Colors of variables: wff set class
Syntax hints:    \/ wo 629    = wceq 1243    e. wcel 1393   E.wrex 2307    u. cun 2915   U_ciun 3657
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-iun 3659
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator