ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunid Unicode version

Theorem iunid 3712
Description: An indexed union of singletons recovers the index set. (Contributed by NM, 6-Sep-2005.)
Assertion
Ref Expression
iunid  |-  U_ x  e.  A  { x }  =  A
Distinct variable group:    x, A

Proof of Theorem iunid
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-sn 3381 . . . . 5  |-  { x }  =  { y  |  y  =  x }
2 equcom 1593 . . . . . 6  |-  ( y  =  x  <->  x  =  y )
32abbii 2153 . . . . 5  |-  { y  |  y  =  x }  =  { y  |  x  =  y }
41, 3eqtri 2060 . . . 4  |-  { x }  =  { y  |  x  =  y }
54a1i 9 . . 3  |-  ( x  e.  A  ->  { x }  =  { y  |  x  =  y } )
65iuneq2i 3675 . 2  |-  U_ x  e.  A  { x }  =  U_ x  e.  A  { y  |  x  =  y }
7 iunab 3703 . . 3  |-  U_ x  e.  A  { y  |  x  =  y }  =  { y  |  E. x  e.  A  x  =  y }
8 risset 2352 . . . 4  |-  ( y  e.  A  <->  E. x  e.  A  x  =  y )
98abbii 2153 . . 3  |-  { y  |  y  e.  A }  =  { y  |  E. x  e.  A  x  =  y }
10 abid2 2158 . . 3  |-  { y  |  y  e.  A }  =  A
117, 9, 103eqtr2i 2066 . 2  |-  U_ x  e.  A  { y  |  x  =  y }  =  A
126, 11eqtri 2060 1  |-  U_ x  e.  A  { x }  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1243    e. wcel 1393   {cab 2026   E.wrex 2307   {csn 3375   U_ciun 3657
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-in 2924  df-ss 2931  df-sn 3381  df-iun 3659
This theorem is referenced by:  iunxpconst  4400  xpexgALT  5760  uniqs  6164
  Copyright terms: Public domain W3C validator