ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunab Structured version   Unicode version

Theorem iunab 3694
Description: The indexed union of a class abstraction. (Contributed by NM, 27-Dec-2004.)
Assertion
Ref Expression
iunab  U_  {  |  }  {  |  }
Distinct variable groups:   ,   ,
Allowed substitution hints:   (,)   ()

Proof of Theorem iunab
StepHypRef Expression
1 nfcv 2175 . . . 4  F/_
2 nfab1 2177 . . . 4  F/_ {  |  }
31, 2nfiunxy 3674 . . 3  F/_ U_  {  |  }
4 nfab1 2177 . . 3  F/_ {  |  }
53, 4cleqf 2198 . 2  U_  {  |  }  {  |  } 
U_  {  |  }  {  |  }
6 abid 2025 . . . 4  {  |  }
76rexbii 2325 . . 3  {  |  }
8 eliun 3652 . . 3  U_  {  |  }  {  |  }
9 abid 2025 . . 3  {  |  }
107, 8, 93bitr4i 201 . 2  U_  {  |  }  {  |  }
115, 10mpgbir 1339 1  U_  {  |  }  {  |  }
Colors of variables: wff set class
Syntax hints:   wb 98   wceq 1242   wcel 1390   {cab 2023  wrex 2301   U_ciun 3648
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-v 2553  df-iun 3650
This theorem is referenced by:  iunrab  3695  iunid  3703  dfimafn2  5166
  Copyright terms: Public domain W3C validator