Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iunab | Unicode version |
Description: The indexed union of a class abstraction. (Contributed by NM, 27-Dec-2004.) |
Ref | Expression |
---|---|
iunab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2178 | . . . 4 | |
2 | nfab1 2180 | . . . 4 | |
3 | 1, 2 | nfiunxy 3683 | . . 3 |
4 | nfab1 2180 | . . 3 | |
5 | 3, 4 | cleqf 2201 | . 2 |
6 | abid 2028 | . . . 4 | |
7 | 6 | rexbii 2331 | . . 3 |
8 | eliun 3661 | . . 3 | |
9 | abid 2028 | . . 3 | |
10 | 7, 8, 9 | 3bitr4i 201 | . 2 |
11 | 5, 10 | mpgbir 1342 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 98 wceq 1243 wcel 1393 cab 2026 wrex 2307 ciun 3657 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-iun 3659 |
This theorem is referenced by: iunrab 3704 iunid 3712 dfimafn2 5223 |
Copyright terms: Public domain | W3C validator |