ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iun0 Structured version   Unicode version

Theorem iun0 3704
Description: An indexed union of the empty set is empty. (Contributed by NM, 26-Mar-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iun0  U_  (/)  (/)

Proof of Theorem iun0
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 noel 3222 . . . . . 6  (/)
21a1i 9 . . . . 5  (/)
32nrex 2405 . . . 4  (/)
4 eliun 3652 . . . 4  U_  (/)  (/)
53, 4mtbir 595 . . 3  U_  (/)
65, 12false 616 . 2  U_  (/)  (/)
76eqriv 2034 1  U_  (/)  (/)
Colors of variables: wff set class
Syntax hints:   wn 3   wceq 1242   wcel 1390  wrex 2301   (/)c0 3218   U_ciun 3648
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-fal 1248  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-v 2553  df-dif 2914  df-nul 3219  df-iun 3650
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator