ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqid Unicode version

Theorem iseqid 9247
Description: Discard the first few terms of a sequence that starts with all zeroes (or whatever the identity  Z is for operation  .+). (Contributed by Mario Carneiro, 13-Jul-2013.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
iseqid.1  |-  ( (
ph  /\  x  e.  S )  ->  ( Z  .+  x )  =  x )
iseqid.2  |-  ( ph  ->  Z  e.  S )
iseqid.3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
iseqid.4  |-  ( ph  ->  ( F `  N
)  e.  S )
iseqid.5  |-  ( (
ph  /\  x  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  x )  =  Z )
iseqid.s  |-  ( ph  ->  S  e.  V )
iseqid.f  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
iseqid.cl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
iseqid  |-  ( ph  ->  (  seq M ( 
.+  ,  F ,  S )  |`  ( ZZ>=
`  N ) )  =  seq N ( 
.+  ,  F ,  S ) )
Distinct variable groups:    x,  .+ , y    x, F, y    x, M, y    x, N, y   
x, S, y    x, Z, y    ph, x, y
Allowed substitution hints:    V( x, y)

Proof of Theorem iseqid
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 iseqid.3 . 2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzelz 8482 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
31, 2syl 14 . . . . 5  |-  ( ph  ->  N  e.  ZZ )
4 iseqid.s . . . . 5  |-  ( ph  ->  S  e.  V )
5 simpr 103 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  N )
)  ->  x  e.  ( ZZ>= `  N )
)
61adantr 261 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  N )
)  ->  N  e.  ( ZZ>= `  M )
)
7 uztrn 8489 . . . . . . 7  |-  ( ( x  e.  ( ZZ>= `  N )  /\  N  e.  ( ZZ>= `  M )
)  ->  x  e.  ( ZZ>= `  M )
)
85, 6, 7syl2anc 391 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  N )
)  ->  x  e.  ( ZZ>= `  M )
)
9 iseqid.f . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
108, 9syldan 266 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  N )
)  ->  ( F `  x )  e.  S
)
11 iseqid.cl . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
123, 4, 10, 11iseq1 9222 . . . 4  |-  ( ph  ->  (  seq N ( 
.+  ,  F ,  S ) `  N
)  =  ( F `
 N ) )
13 iseqeq1 9214 . . . . . 6  |-  ( N  =  M  ->  seq N (  .+  ,  F ,  S )  =  seq M (  .+  ,  F ,  S ) )
1413fveq1d 5180 . . . . 5  |-  ( N  =  M  ->  (  seq N (  .+  ,  F ,  S ) `  N )  =  (  seq M (  .+  ,  F ,  S ) `
 N ) )
1514eqeq1d 2048 . . . 4  |-  ( N  =  M  ->  (
(  seq N (  .+  ,  F ,  S ) `
 N )  =  ( F `  N
)  <->  (  seq M
(  .+  ,  F ,  S ) `  N
)  =  ( F `
 N ) ) )
1612, 15syl5ibcom 144 . . 3  |-  ( ph  ->  ( N  =  M  ->  (  seq M
(  .+  ,  F ,  S ) `  N
)  =  ( F `
 N ) ) )
17 eluzel2 8478 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
181, 17syl 14 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
1918adantr 261 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  M  e.  ZZ )
20 simpr 103 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  N  e.  ( ZZ>= `  ( M  +  1 ) ) )
214adantr 261 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  S  e.  V )
229adantlr 446 . . . . . 6  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
2311adantlr 446 . . . . . 6  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
2419, 20, 21, 22, 23iseqm1 9227 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  (  seq M (  .+  ,  F ,  S ) `  N )  =  ( (  seq M ( 
.+  ,  F ,  S ) `  ( N  -  1 ) )  .+  ( F `
 N ) ) )
25 iseqid.2 . . . . . . . . 9  |-  ( ph  ->  Z  e.  S )
26 iseqid.1 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  S )  ->  ( Z  .+  x )  =  x )
2726ralrimiva 2392 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  S  ( Z  .+  x )  =  x )
28 oveq2 5520 . . . . . . . . . . 11  |-  ( x  =  Z  ->  ( Z  .+  x )  =  ( Z  .+  Z
) )
29 id 19 . . . . . . . . . . 11  |-  ( x  =  Z  ->  x  =  Z )
3028, 29eqeq12d 2054 . . . . . . . . . 10  |-  ( x  =  Z  ->  (
( Z  .+  x
)  =  x  <->  ( Z  .+  Z )  =  Z ) )
3130rspcv 2652 . . . . . . . . 9  |-  ( Z  e.  S  ->  ( A. x  e.  S  ( Z  .+  x )  =  x  ->  ( Z  .+  Z )  =  Z ) )
3225, 27, 31sylc 56 . . . . . . . 8  |-  ( ph  ->  ( Z  .+  Z
)  =  Z )
3332adantr 261 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( Z  .+  Z )  =  Z )
34 eluzp1m1 8496 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
( N  -  1 )  e.  ( ZZ>= `  M ) )
3518, 34sylan 267 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( N  -  1 )  e.  ( ZZ>= `  M )
)
36 iseqid.5 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  x )  =  Z )
3736adantlr 446 . . . . . . 7  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  /\  x  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  x )  =  Z )
3825adantr 261 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  Z  e.  S )
3933, 35, 37, 38, 21, 22, 23iseqid3s 9246 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  (  seq M (  .+  ,  F ,  S ) `  ( N  -  1 ) )  =  Z )
4039oveq1d 5527 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( (  seq M (  .+  ,  F ,  S ) `  ( N  -  1 ) )  .+  ( F `  N )
)  =  ( Z 
.+  ( F `  N ) ) )
41 iseqid.4 . . . . . . 7  |-  ( ph  ->  ( F `  N
)  e.  S )
4241adantr 261 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  N )  e.  S
)
4327adantr 261 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  A. x  e.  S  ( Z  .+  x )  =  x )
44 oveq2 5520 . . . . . . . 8  |-  ( x  =  ( F `  N )  ->  ( Z  .+  x )  =  ( Z  .+  ( F `  N )
) )
45 id 19 . . . . . . . 8  |-  ( x  =  ( F `  N )  ->  x  =  ( F `  N ) )
4644, 45eqeq12d 2054 . . . . . . 7  |-  ( x  =  ( F `  N )  ->  (
( Z  .+  x
)  =  x  <->  ( Z  .+  ( F `  N
) )  =  ( F `  N ) ) )
4746rspcv 2652 . . . . . 6  |-  ( ( F `  N )  e.  S  ->  ( A. x  e.  S  ( Z  .+  x )  =  x  ->  ( Z  .+  ( F `  N ) )  =  ( F `  N
) ) )
4842, 43, 47sylc 56 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( Z  .+  ( F `  N
) )  =  ( F `  N ) )
4924, 40, 483eqtrd 2076 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  (  seq M (  .+  ,  F ,  S ) `  N )  =  ( F `  N ) )
5049ex 108 . . 3  |-  ( ph  ->  ( N  e.  (
ZZ>= `  ( M  + 
1 ) )  -> 
(  seq M (  .+  ,  F ,  S ) `
 N )  =  ( F `  N
) ) )
51 uzp1 8506 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  =  M  \/  N  e.  ( ZZ>= `  ( M  +  1 ) ) ) )
521, 51syl 14 . . 3  |-  ( ph  ->  ( N  =  M  \/  N  e.  (
ZZ>= `  ( M  + 
1 ) ) ) )
5316, 50, 52mpjaod 638 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ,  S ) `  N
)  =  ( F `
 N ) )
54 eqidd 2041 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( N  +  1 ) ) )  ->  ( F `  k )  =  ( F `  k ) )
551, 53, 4, 9, 10, 11, 54iseqfeq2 9229 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ,  S )  |`  ( ZZ>=
`  N ) )  =  seq N ( 
.+  ,  F ,  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    \/ wo 629    = wceq 1243    e. wcel 1393   A.wral 2306    |` cres 4347   ` cfv 4902  (class class class)co 5512   1c1 6890    + caddc 6892    - cmin 7182   ZZcz 8245   ZZ>=cuz 8473   ...cfz 8874    seqcseq 9211
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-addcom 6984  ax-addass 6986  ax-distr 6988  ax-i2m1 6989  ax-0id 6992  ax-rnegex 6993  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-ltadd 7000
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-frec 5978  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-inn 7915  df-n0 8182  df-z 8246  df-uz 8474  df-fz 8875  df-fzo 9000  df-iseq 9212
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator