Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iotabi | Unicode version |
Description: Equivalence theorem for descriptions. (Contributed by Andrew Salmon, 30-Jun-2011.) |
Ref | Expression |
---|---|
iotabi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi 2151 | . . . . . 6 | |
2 | 1 | biimpi 113 | . . . . 5 |
3 | 2 | eqeq1d 2048 | . . . 4 |
4 | 3 | abbidv 2155 | . . 3 |
5 | 4 | unieqd 3591 | . 2 |
6 | df-iota 4867 | . 2 | |
7 | df-iota 4867 | . 2 | |
8 | 5, 6, 7 | 3eqtr4g 2097 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 98 wal 1241 wceq 1243 cab 2026 csn 3375 cuni 3580 cio 4865 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-rex 2312 df-uni 3581 df-iota 4867 |
This theorem is referenced by: iotabidv 4888 iotabii 4889 eusvobj1 5499 |
Copyright terms: Public domain | W3C validator |