ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iocssicc Unicode version

Theorem iocssicc 8830
Description: A closed-above, open-below interval is a subset of its closure. (Contributed by Thierry Arnoux, 1-Apr-2017.)
Assertion
Ref Expression
iocssicc  |-  ( A (,] B )  C_  ( A [,] B )

Proof of Theorem iocssicc
Dummy variables  a  b  w  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ioc 8762 . 2  |-  (,]  =  ( a  e.  RR* ,  b  e.  RR*  |->  { x  e.  RR*  |  ( a  <  x  /\  x  <_  b ) } )
2 df-icc 8764 . 2  |-  [,]  =  ( a  e.  RR* ,  b  e.  RR*  |->  { x  e.  RR*  |  ( a  <_  x  /\  x  <_  b ) } )
3 xrltle 8719 . 2  |-  ( ( A  e.  RR*  /\  w  e.  RR* )  ->  ( A  <  w  ->  A  <_  w ) )
4 idd 21 . 2  |-  ( ( w  e.  RR*  /\  B  e.  RR* )  ->  (
w  <_  B  ->  w  <_  B ) )
51, 2, 3, 4ixxssixx 8771 1  |-  ( A (,] B )  C_  ( A [,] B )
Colors of variables: wff set class
Syntax hints:    /\ wa 97    e. wcel 1393    C_ wss 2917   class class class wbr 3764  (class class class)co 5512   RR*cxr 7059    < clt 7060    <_ cle 7061   (,]cioc 8758   [,]cicc 8760
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-cnex 6975  ax-resscn 6976  ax-pre-ltirr 6996  ax-pre-lttrn 6998
This theorem depends on definitions:  df-bi 110  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-iota 4867  df-fun 4904  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-ioc 8762  df-icc 8764
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator