ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intfracq Unicode version

Theorem intfracq 9162
Description: Decompose a rational number, expressed as a ratio, into integer and fractional parts. The fractional part has a tighter bound than that of intqfrac2 9161. (Contributed by NM, 16-Aug-2008.)
Hypotheses
Ref Expression
intfracq.1  |-  Z  =  ( |_ `  ( M  /  N ) )
intfracq.2  |-  F  =  ( ( M  /  N )  -  Z
)
Assertion
Ref Expression
intfracq  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( 0  <_  F  /\  F  <_  ( ( N  -  1 )  /  N )  /\  ( M  /  N
)  =  ( Z  +  F ) ) )

Proof of Theorem intfracq
StepHypRef Expression
1 znq 8559 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  /  N
)  e.  QQ )
2 intfracq.1 . . . . 5  |-  Z  =  ( |_ `  ( M  /  N ) )
3 intfracq.2 . . . . 5  |-  F  =  ( ( M  /  N )  -  Z
)
42, 3intqfrac2 9161 . . . 4  |-  ( ( M  /  N )  e.  QQ  ->  (
0  <_  F  /\  F  <  1  /\  ( M  /  N )  =  ( Z  +  F
) ) )
51, 4syl 14 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( 0  <_  F  /\  F  <  1  /\  ( M  /  N
)  =  ( Z  +  F ) ) )
65simp1d 916 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  0  <_  F )
7 qfraclt1 9122 . . . . . . 7  |-  ( ( M  /  N )  e.  QQ  ->  (
( M  /  N
)  -  ( |_
`  ( M  /  N ) ) )  <  1 )
81, 7syl 14 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  /  N )  -  ( |_ `  ( M  /  N ) ) )  <  1 )
92oveq2i 5523 . . . . . . . 8  |-  ( ( M  /  N )  -  Z )  =  ( ( M  /  N )  -  ( |_ `  ( M  /  N ) ) )
103, 9eqtri 2060 . . . . . . 7  |-  F  =  ( ( M  /  N )  -  ( |_ `  ( M  /  N ) ) )
1110a1i 9 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  F  =  ( ( M  /  N )  -  ( |_ `  ( M  /  N
) ) ) )
12 simpr 103 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N  e.  NN )
1312nncnd 7928 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N  e.  CC )
1412nnap0d 7959 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N #  0 )
1513, 14dividapd 7762 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  /  N
)  =  1 )
168, 11, 153brtr4d 3794 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  F  <  ( N  /  N ) )
17 qre 8560 . . . . . . . . 9  |-  ( ( M  /  N )  e.  QQ  ->  ( M  /  N )  e.  RR )
181, 17syl 14 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  /  N
)  e.  RR )
191flqcld 9119 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( |_ `  ( M  /  N ) )  e.  ZZ )
202, 19syl5eqel 2124 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  Z  e.  ZZ )
2120zred 8360 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  Z  e.  RR )
2218, 21resubcld 7379 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  /  N )  -  Z
)  e.  RR )
233, 22syl5eqel 2124 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  F  e.  RR )
24 nnre 7921 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  RR )
2524adantl 262 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N  e.  RR )
26 nngt0 7939 . . . . . . . 8  |-  ( N  e.  NN  ->  0  <  N )
2724, 26jca 290 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  e.  RR  /\  0  <  N ) )
2827adantl 262 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  e.  RR  /\  0  <  N ) )
29 ltmuldiv2 7841 . . . . . 6  |-  ( ( F  e.  RR  /\  N  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  -> 
( ( N  x.  F )  <  N  <->  F  <  ( N  /  N ) ) )
3023, 25, 28, 29syl3anc 1135 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( N  x.  F )  <  N  <->  F  <  ( N  /  N ) ) )
3116, 30mpbird 156 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  F
)  <  N )
323oveq2i 5523 . . . . . . 7  |-  ( N  x.  F )  =  ( N  x.  (
( M  /  N
)  -  Z ) )
3318recnd 7054 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  /  N
)  e.  CC )
3420zcnd 8361 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  Z  e.  CC )
3513, 33, 34subdid 7411 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  (
( M  /  N
)  -  Z ) )  =  ( ( N  x.  ( M  /  N ) )  -  ( N  x.  Z ) ) )
3632, 35syl5eq 2084 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  F
)  =  ( ( N  x.  ( M  /  N ) )  -  ( N  x.  Z ) ) )
37 zcn 8250 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  e.  CC )
3837adantr 261 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  M  e.  CC )
3938, 13, 14divcanap2d 7767 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  ( M  /  N ) )  =  M )
40 simpl 102 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  M  e.  ZZ )
4139, 40eqeltrd 2114 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  ( M  /  N ) )  e.  ZZ )
42 nnz 8264 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  ZZ )
4342adantl 262 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N  e.  ZZ )
4443, 20zmulcld 8366 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  Z
)  e.  ZZ )
4541, 44zsubcld 8365 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( N  x.  ( M  /  N
) )  -  ( N  x.  Z )
)  e.  ZZ )
4636, 45eqeltrd 2114 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  F
)  e.  ZZ )
47 zltlem1 8301 . . . . 5  |-  ( ( ( N  x.  F
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( N  x.  F )  <  N  <->  ( N  x.  F )  <_  ( N  - 
1 ) ) )
4846, 43, 47syl2anc 391 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( N  x.  F )  <  N  <->  ( N  x.  F )  <_  ( N  - 
1 ) ) )
4931, 48mpbid 135 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  x.  F
)  <_  ( N  -  1 ) )
50 peano2rem 7278 . . . . . 6  |-  ( N  e.  RR  ->  ( N  -  1 )  e.  RR )
5124, 50syl 14 . . . . 5  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  RR )
5251adantl 262 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  -  1 )  e.  RR )
53 lemuldiv2 7848 . . . 4  |-  ( ( F  e.  RR  /\  ( N  -  1
)  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  ->  ( ( N  x.  F )  <_  ( N  -  1 )  <->  F  <_  ( ( N  -  1 )  /  N ) ) )
5423, 52, 28, 53syl3anc 1135 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( N  x.  F )  <_  ( N  -  1 )  <-> 
F  <_  ( ( N  -  1 )  /  N ) ) )
5549, 54mpbid 135 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  F  <_  ( ( N  -  1 )  /  N ) )
565simp3d 918 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  /  N
)  =  ( Z  +  F ) )
576, 55, 563jca 1084 1  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( 0  <_  F  /\  F  <_  ( ( N  -  1 )  /  N )  /\  ( M  /  N
)  =  ( Z  +  F ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    /\ w3a 885    = wceq 1243    e. wcel 1393   class class class wbr 3764   ` cfv 4902  (class class class)co 5512   CCcc 6887   RRcr 6888   0cc0 6889   1c1 6890    + caddc 6892    x. cmul 6894    < clt 7060    <_ cle 7061    - cmin 7182    / cdiv 7651   NNcn 7914   ZZcz 8245   QQcq 8554   |_cfl 9112
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-mulrcl 6983  ax-addcom 6984  ax-mulcom 6985  ax-addass 6986  ax-mulass 6987  ax-distr 6988  ax-i2m1 6989  ax-1rid 6991  ax-0id 6992  ax-rnegex 6993  ax-precex 6994  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-apti 6999  ax-pre-ltadd 7000  ax-pre-mulgt0 7001  ax-pre-mulext 7002  ax-arch 7003
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-reap 7566  df-ap 7573  df-div 7652  df-inn 7915  df-n0 8182  df-z 8246  df-q 8555  df-rp 8584  df-fl 9114
This theorem is referenced by:  flqdiv  9163
  Copyright terms: Public domain W3C validator