ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imandc Unicode version

Theorem imandc 786
Description: Express implication in terms of conjunction. Theorem 3.4(27) of [Stoll] p. 176, with an added decidability condition. The forward direction, imanim 785, holds for all propositions, not just decidable ones. (Contributed by Jim Kingdon, 25-Apr-2018.)
Assertion
Ref Expression
imandc  |-  (DECID  ps  ->  ( ( ph  ->  ps ) 
<->  -.  ( ph  /\  -.  ps ) ) )

Proof of Theorem imandc
StepHypRef Expression
1 notnotbdc 766 . . 3  |-  (DECID  ps  ->  ( ps  <->  -.  -.  ps )
)
21imbi2d 219 . 2  |-  (DECID  ps  ->  ( ( ph  ->  ps ) 
<->  ( ph  ->  -.  -.  ps ) ) )
3 imnan 624 . 2  |-  ( (
ph  ->  -.  -.  ps )  <->  -.  ( ph  /\  -.  ps ) )
42, 3syl6bb 185 1  |-  (DECID  ps  ->  ( ( ph  ->  ps ) 
<->  -.  ( ph  /\  -.  ps ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 97    <-> wb 98  DECID wdc 742
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630
This theorem depends on definitions:  df-bi 110  df-dc 743
This theorem is referenced by:  annimdc  845
  Copyright terms: Public domain W3C validator