Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  iinuniss Structured version   Unicode version

Theorem iinuniss 3728
 Description: A relationship involving union and indexed intersection. Exercise 23 of [Enderton] p. 33 but with equality changed to subset. (Contributed by Jim Kingdon, 19-Aug-2018.)
Assertion
Ref Expression
iinuniss
Distinct variable groups:   ,   ,

Proof of Theorem iinuniss
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 r19.32vr 2452 . . . 4
2 vex 2554 . . . . . 6
32elint2 3613 . . . . 5
43orbi2i 678 . . . 4
5 elun 3078 . . . . 5
65ralbii 2324 . . . 4
71, 4, 63imtr4i 190 . . 3
87ss2abi 3006 . 2
9 df-un 2916 . 2
10 df-iin 3651 . 2
118, 9, 103sstr4i 2978 1
 Colors of variables: wff set class Syntax hints:   wo 628   wcel 1390  cab 2023  wral 2300   cun 2909   wss 2911  cint 3606  ciin 3649 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019 This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-v 2553  df-un 2916  df-in 2918  df-ss 2925  df-int 3607  df-iin 3651 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator