Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  iinconstm Unicode version

Theorem iinconstm 3666
 Description: Indexed intersection of a constant class, i.e. where does not depend on . (Contributed by Jim Kingdon, 19-Dec-2018.)
Assertion
Ref Expression
iinconstm
Distinct variable groups:   ,   ,   ,
Allowed substitution hint:   ()

Proof of Theorem iinconstm
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 r19.3rmv 3312 . . 3
2 vex 2560 . . . 4
3 eliin 3662 . . . 4
42, 3ax-mp 7 . . 3
51, 4syl6rbbr 188 . 2
65eqrdv 2038 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 98   wceq 1243  wex 1381   wcel 1393  wral 2306  cvv 2557  ciin 3658 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559  df-iin 3660 This theorem is referenced by:  iin0imm  3921
 Copyright terms: Public domain W3C validator