Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifbieq2i Unicode version

Theorem ifbieq2i 3351
 Description: Equivalence/equality inference for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
ifbieq2i.1
ifbieq2i.2
Assertion
Ref Expression
ifbieq2i

Proof of Theorem ifbieq2i
StepHypRef Expression
1 ifbieq2i.1 . . 3
2 ifbi 3348 . . 3
31, 2ax-mp 7 . 2
4 ifbieq2i.2 . . 3
5 ifeq2 3335 . . 3
64, 5ax-mp 7 . 2
73, 6eqtri 2060 1
 Colors of variables: wff set class Syntax hints:   wb 98   wceq 1243  cif 3331 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rab 2315  df-v 2559  df-un 2922  df-if 3332 This theorem is referenced by:  ifbieq12i  3353
 Copyright terms: Public domain W3C validator