ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifbieq12i Unicode version

Theorem ifbieq12i 3353
Description: Equivalence deduction for conditional operators. (Contributed by NM, 18-Mar-2013.)
Hypotheses
Ref Expression
ifbieq12i.1  |-  ( ph  <->  ps )
ifbieq12i.2  |-  A  =  C
ifbieq12i.3  |-  B  =  D
Assertion
Ref Expression
ifbieq12i  |-  if (
ph ,  A ,  B )  =  if ( ps ,  C ,  D )

Proof of Theorem ifbieq12i
StepHypRef Expression
1 ifbieq12i.2 . . 3  |-  A  =  C
2 ifeq1 3334 . . 3  |-  ( A  =  C  ->  if ( ph ,  A ,  B )  =  if ( ph ,  C ,  B ) )
31, 2ax-mp 7 . 2  |-  if (
ph ,  A ,  B )  =  if ( ph ,  C ,  B )
4 ifbieq12i.1 . . 3  |-  ( ph  <->  ps )
5 ifbieq12i.3 . . 3  |-  B  =  D
64, 5ifbieq2i 3351 . 2  |-  if (
ph ,  C ,  B )  =  if ( ps ,  C ,  D )
73, 6eqtri 2060 1  |-  if (
ph ,  A ,  B )  =  if ( ps ,  C ,  D )
Colors of variables: wff set class
Syntax hints:    <-> wb 98    = wceq 1243   ifcif 3331
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rab 2315  df-v 2559  df-un 2922  df-if 3332
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator