ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  idssen Unicode version

Theorem idssen 6257
Description: Equality implies equinumerosity. (Contributed by NM, 30-Apr-1998.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
idssen  |-  _I  C_  ~~

Proof of Theorem idssen
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reli 4465 . 2  |-  Rel  _I
2 vex 2560 . . . . 5  |-  y  e. 
_V
32ideq 4488 . . . 4  |-  ( x  _I  y  <->  x  =  y )
4 vex 2560 . . . . 5  |-  x  e. 
_V
5 eqeng 6246 . . . . 5  |-  ( x  e.  _V  ->  (
x  =  y  ->  x  ~~  y ) )
64, 5ax-mp 7 . . . 4  |-  ( x  =  y  ->  x  ~~  y )
73, 6sylbi 114 . . 3  |-  ( x  _I  y  ->  x  ~~  y )
8 df-br 3765 . . 3  |-  ( x  _I  y  <->  <. x ,  y >.  e.  _I  )
9 df-br 3765 . . 3  |-  ( x 
~~  y  <->  <. x ,  y >.  e.  ~~  )
107, 8, 93imtr3i 189 . 2  |-  ( <.
x ,  y >.  e.  _I  ->  <. x ,  y >.  e.  ~~  )
111, 10relssi 4431 1  |-  _I  C_  ~~
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1393   _Vcvv 2557    C_ wss 2917   <.cop 3378   class class class wbr 3764    _I cid 4025    ~~ cen 6219
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-en 6222
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator