ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccssico2 Unicode version

Theorem iccssico2 8816
Description: Condition for a closed interval to be a subset of a closed-below, open-above interval. (Contributed by Mario Carneiro, 20-Feb-2015.)
Assertion
Ref Expression
iccssico2  |-  ( ( C  e.  ( A [,) B )  /\  D  e.  ( A [,) B ) )  -> 
( C [,] D
)  C_  ( A [,) B ) )

Proof of Theorem iccssico2
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ico 8763 . . . 4  |-  [,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <  y ) } )
21elmpt2cl1 5699 . . 3  |-  ( C  e.  ( A [,) B )  ->  A  e.  RR* )
32adantr 261 . 2  |-  ( ( C  e.  ( A [,) B )  /\  D  e.  ( A [,) B ) )  ->  A  e.  RR* )
41elmpt2cl2 5700 . . 3  |-  ( C  e.  ( A [,) B )  ->  B  e.  RR* )
54adantr 261 . 2  |-  ( ( C  e.  ( A [,) B )  /\  D  e.  ( A [,) B ) )  ->  B  e.  RR* )
61elixx3g 8770 . . . . 5  |-  ( C  e.  ( A [,) B )  <->  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  ( A  <_  C  /\  C  <  B ) ) )
76simprbi 260 . . . 4  |-  ( C  e.  ( A [,) B )  ->  ( A  <_  C  /\  C  <  B ) )
87simpld 105 . . 3  |-  ( C  e.  ( A [,) B )  ->  A  <_  C )
98adantr 261 . 2  |-  ( ( C  e.  ( A [,) B )  /\  D  e.  ( A [,) B ) )  ->  A  <_  C )
101elixx3g 8770 . . . . 5  |-  ( D  e.  ( A [,) B )  <->  ( ( A  e.  RR*  /\  B  e.  RR*  /\  D  e. 
RR* )  /\  ( A  <_  D  /\  D  <  B ) ) )
1110simprbi 260 . . . 4  |-  ( D  e.  ( A [,) B )  ->  ( A  <_  D  /\  D  <  B ) )
1211simprd 107 . . 3  |-  ( D  e.  ( A [,) B )  ->  D  <  B )
1312adantl 262 . 2  |-  ( ( C  e.  ( A [,) B )  /\  D  e.  ( A [,) B ) )  ->  D  <  B )
14 iccssico 8814 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( A  <_  C  /\  D  <  B ) )  ->  ( C [,] D )  C_  ( A [,) B ) )
153, 5, 9, 13, 14syl22anc 1136 1  |-  ( ( C  e.  ( A [,) B )  /\  D  e.  ( A [,) B ) )  -> 
( C [,] D
)  C_  ( A [,) B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    /\ w3a 885    e. wcel 1393   {crab 2310    C_ wss 2917   class class class wbr 3764  (class class class)co 5512   RR*cxr 7059    < clt 7060    <_ cle 7061   [,)cico 8759   [,]cicc 8760
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-cnex 6975  ax-resscn 6976  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998
This theorem depends on definitions:  df-bi 110  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-id 4030  df-po 4033  df-iso 4034  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-iota 4867  df-fun 4904  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-ico 8763  df-icc 8764
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator