ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ialgrf Unicode version

Theorem ialgrf 9884
Description: An algorithm is a step function  F : S --> S on a state space  S. An algorithm acts on an initial state  A  e.  S by iteratively applying  F to give  A,  ( F `  A ),  ( F `  ( F `  A )
) and so on. An algorithm is said to halt if a fixed point of  F is reached after a finite number of iterations.

The algorithm iterator  R : NN0 --> S "runs" the algorithm  F so that  ( R `  k ) is the state after  k iterations of  F on the initial state  A.

Domain and codomain of the algorithm iterator  R. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 28-May-2014.)

Hypotheses
Ref Expression
algrf.1  |-  Z  =  ( ZZ>= `  M )
algrf.2  |-  R  =  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ,  S )
algrf.3  |-  ( ph  ->  M  e.  ZZ )
algrf.4  |-  ( ph  ->  A  e.  S )
algrf.5  |-  ( ph  ->  F : S --> S )
algrf.s  |-  ( ph  ->  S  e.  V )
Assertion
Ref Expression
ialgrf  |-  ( ph  ->  R : Z --> S )

Proof of Theorem ialgrf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 algrf.1 . . 3  |-  Z  =  ( ZZ>= `  M )
2 algrf.s . . 3  |-  ( ph  ->  S  e.  V )
3 algrf.3 . . 3  |-  ( ph  ->  M  e.  ZZ )
41eleq2i 2104 . . . 4  |-  ( x  e.  Z  <->  x  e.  ( ZZ>= `  M )
)
5 algrf.4 . . . . 5  |-  ( ph  ->  A  e.  S )
61, 5ialgrlemconst 9882 . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( ( Z  X.  { A }
) `  x )  e.  S )
74, 6sylan2b 271 . . 3  |-  ( (
ph  /\  x  e.  Z )  ->  (
( Z  X.  { A } ) `  x
)  e.  S )
8 algrf.5 . . . 4  |-  ( ph  ->  F : S --> S )
98ialgrlem1st 9881 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x ( F  o.  1st ) y )  e.  S )
101, 2, 3, 7, 9iseqf 9224 . 2  |-  ( ph  ->  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ,  S ) : Z --> S )
11 algrf.2 . . 3  |-  R  =  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ,  S )
1211feq1i 5039 . 2  |-  ( R : Z --> S  <->  seq M ( ( F  o.  1st ) ,  ( Z  X.  { A } ) ,  S ) : Z --> S )
1310, 12sylibr 137 1  |-  ( ph  ->  R : Z --> S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1243    e. wcel 1393   {csn 3375    X. cxp 4343    o. ccom 4349   -->wf 4898   ` cfv 4902   1stc1st 5765   ZZcz 8245   ZZ>=cuz 8473    seqcseq 9211
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311  ax-cnex 6975  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-icn 6979  ax-addcl 6980  ax-addrcl 6981  ax-mulcl 6982  ax-addcom 6984  ax-addass 6986  ax-distr 6988  ax-i2m1 6989  ax-0id 6992  ax-rnegex 6993  ax-cnre 6995  ax-pre-ltirr 6996  ax-pre-ltwlin 6997  ax-pre-lttrn 6998  ax-pre-ltadd 7000
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-nel 2207  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-frec 5978  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-iltp 6568  df-enr 6811  df-nr 6812  df-ltr 6815  df-0r 6816  df-1r 6817  df-0 6896  df-1 6897  df-r 6899  df-lt 6902  df-pnf 7062  df-mnf 7063  df-xr 7064  df-ltxr 7065  df-le 7066  df-sub 7184  df-neg 7185  df-inn 7915  df-n0 8182  df-z 8246  df-uz 8474  df-iseq 9212
This theorem is referenced by:  ialginv  9886  ialgcvg  9887  ialgcvga  9890  ialgfx  9891
  Copyright terms: Public domain W3C validator