ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbsbd Unicode version

Theorem hbsbd 1858
Description: Deduction version of hbsb 1823. (Contributed by NM, 15-Feb-2013.) (Proof rewritten by Jim Kingdon, 23-Mar-2018.)
Hypotheses
Ref Expression
hbsbd.1  |-  ( ph  ->  A. x ph )
hbsbd.2  |-  ( ph  ->  A. z ph )
hbsbd.3  |-  ( ph  ->  ( ps  ->  A. z ps ) )
Assertion
Ref Expression
hbsbd  |-  ( ph  ->  ( [ y  /  x ] ps  ->  A. z [ y  /  x ] ps ) )
Distinct variable group:    y, z
Allowed substitution hints:    ph( x, y, z)    ps( x, y, z)

Proof of Theorem hbsbd
StepHypRef Expression
1 hbsbd.2 . . . 4  |-  ( ph  ->  A. z ph )
21nfi 1351 . . 3  |-  F/ z
ph
3 hbsbd.3 . . . . . . 7  |-  ( ph  ->  ( ps  ->  A. z ps ) )
41, 3nfdh 1417 . . . . . 6  |-  ( ph  ->  F/ z ps )
52, 4nfim1 1463 . . . . 5  |-  F/ z ( ph  ->  ps )
65nfsb 1822 . . . 4  |-  F/ z [ y  /  x ] ( ph  ->  ps )
7 hbsbd.1 . . . . . 6  |-  ( ph  ->  A. x ph )
87sbrim 1830 . . . . 5  |-  ( [ y  /  x ]
( ph  ->  ps )  <->  (
ph  ->  [ y  /  x ] ps ) )
98nfbii 1362 . . . 4  |-  ( F/ z [ y  /  x ] ( ph  ->  ps )  <->  F/ z ( ph  ->  [ y  /  x ] ps ) )
106, 9mpbi 133 . . 3  |-  F/ z ( ph  ->  [ y  /  x ] ps )
112, 10nfrimi 1418 . 2  |-  ( ph  ->  F/ z [ y  /  x ] ps )
1211nfrd 1413 1  |-  ( ph  ->  ( [ y  /  x ] ps  ->  A. z [ y  /  x ] ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1241   F/wnf 1349   [wsb 1645
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator