Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbsbd Unicode version

Theorem hbsbd 1858
 Description: Deduction version of hbsb 1823. (Contributed by NM, 15-Feb-2013.) (Proof rewritten by Jim Kingdon, 23-Mar-2018.)
Hypotheses
Ref Expression
hbsbd.1
hbsbd.2
hbsbd.3
Assertion
Ref Expression
hbsbd
Distinct variable group:   ,
Allowed substitution hints:   (,,)   (,,)

Proof of Theorem hbsbd
StepHypRef Expression
1 hbsbd.2 . . . 4
21nfi 1351 . . 3
3 hbsbd.3 . . . . . . 7
41, 3nfdh 1417 . . . . . 6
52, 4nfim1 1463 . . . . 5
65nfsb 1822 . . . 4
7 hbsbd.1 . . . . . 6
87sbrim 1830 . . . . 5
98nfbii 1362 . . . 4
106, 9mpbi 133 . . 3
112, 10nfrimi 1418 . 2
1211nfrd 1413 1
 Colors of variables: wff set class Syntax hints:   wi 4  wal 1241  wnf 1349  wsb 1645 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428 This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator