ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbs1 Structured version   Unicode version

Theorem hbs1 1811
Description: is not free in when and are distinct. (Contributed by NM, 5-Aug-1993.) (Proof by Jim Kingdon, 16-Dec-2017.) (New usage is discouraged.)
Assertion
Ref Expression
hbs1
Distinct variable group:   ,
Allowed substitution hints:   (,)

Proof of Theorem hbs1
StepHypRef Expression
1 sb6 1763 . 2
2 ax-ial 1424 . 2
31, 2hbxfrbi 1358 1
Colors of variables: wff set class
Syntax hints:   wi 4  wal 1240  wsb 1642
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-11 1394  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424
This theorem depends on definitions:  df-bi 110  df-sb 1643
This theorem is referenced by:  nfs1v  1812  sb9v  1851  eu1  1922  mopick  1975  hbab1  2026
  Copyright terms: Public domain W3C validator