ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbor Unicode version

Theorem hbor 1435
Description: If is not free in and , it is not free in . (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.)
Hypotheses
Ref Expression
hb.1
hb.2
Assertion
Ref Expression
hbor

Proof of Theorem hbor
StepHypRef Expression
1 hb.1 . . 3
2 orc 632 . . . 4
32alimi 1341 . . 3
41, 3syl 14 . 2
5 hb.2 . . 3
6 olc 631 . . . 4
76alimi 1341 . . 3
85, 7syl 14 . 2
94, 8jaoi 635 1
Colors of variables: wff set class
Syntax hints:   wi 4   wo 628  wal 1240
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-gen 1335
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  hb3or  1438  nfor  1463  19.43  1516
  Copyright terms: Public domain W3C validator