ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbab1 Structured version   Unicode version

Theorem hbab1 2026
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
hbab1  {  |  }  {  |  }
Distinct variable group:   ,
Allowed substitution hints:   (,)

Proof of Theorem hbab1
StepHypRef Expression
1 df-clab 2024 . 2  {  |  }
2 hbs1 1811 . 2
31, 2hbxfrbi 1358 1  {  |  }  {  |  }
Colors of variables: wff set class
Syntax hints:   wi 4  wal 1240   wcel 1390  wsb 1642   {cab 2023
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-11 1394  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424
This theorem depends on definitions:  df-bi 110  df-sb 1643  df-clab 2024
This theorem is referenced by:  nfsab1  2027  abeq2  2143
  Copyright terms: Public domain W3C validator