ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hb3an Unicode version

Theorem hb3an 1439
Description: If is not free in , , and , it is not free in . (Contributed by NM, 14-Sep-2003.)
Hypotheses
Ref Expression
hb.1
hb.2
hb.3
Assertion
Ref Expression
hb3an

Proof of Theorem hb3an
StepHypRef Expression
1 df-3an 886 . 2
2 hb.1 . . . 4
3 hb.2 . . . 4
42, 3hban 1436 . . 3
5 hb.3 . . 3
64, 5hban 1436 . 2
71, 6hbxfrbi 1358 1
Colors of variables: wff set class
Syntax hints:   wi 4   wa 97   w3a 884  wal 1240
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335
This theorem depends on definitions:  df-bi 110  df-3an 886
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator