ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpdisj Unicode version

Theorem genpdisj 6621
Description: The lower and upper cuts produced by addition or multiplication on positive reals are disjoint. (Contributed by Jim Kingdon, 15-Oct-2019.)
Hypotheses
Ref Expression
genpelvl.1  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } >. )
genpelvl.2  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
genpdisj.ord  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
x  <Q  y  <->  ( z G x )  <Q 
( z G y ) ) )
genpdisj.com  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x G y )  =  ( y G x ) )
Assertion
Ref Expression
genpdisj  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. q  e.  Q.  -.  ( q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )
Distinct variable groups:    x, y, z, w, v, q, A   
x, B, y, z, w, v, q    x, G, y, z, w, v, q    F, q
Allowed substitution hints:    F( x, y, z, w, v)

Proof of Theorem genpdisj
Dummy variables  a  b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 genpelvl.1 . . . . . . . . 9  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } >. )
2 genpelvl.2 . . . . . . . . 9  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
31, 2genpelvl 6610 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( q  e.  ( 1st `  ( A F B ) )  <->  E. a  e.  ( 1st `  A ) E. b  e.  ( 1st `  B ) q  =  ( a G b ) ) )
4 r2ex 2344 . . . . . . . 8  |-  ( E. a  e.  ( 1st `  A ) E. b  e.  ( 1st `  B
) q  =  ( a G b )  <->  E. a E. b ( ( a  e.  ( 1st `  A )  /\  b  e.  ( 1st `  B ) )  /\  q  =  ( a G b ) ) )
53, 4syl6bb 185 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( q  e.  ( 1st `  ( A F B ) )  <->  E. a E. b ( ( a  e.  ( 1st `  A )  /\  b  e.  ( 1st `  B ) )  /\  q  =  ( a G b ) ) ) )
61, 2genpelvu 6611 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( q  e.  ( 2nd `  ( A F B ) )  <->  E. c  e.  ( 2nd `  A ) E. d  e.  ( 2nd `  B ) q  =  ( c G d ) ) )
7 r2ex 2344 . . . . . . . 8  |-  ( E. c  e.  ( 2nd `  A ) E. d  e.  ( 2nd `  B
) q  =  ( c G d )  <->  E. c E. d ( ( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) )  /\  q  =  ( c G d ) ) )
86, 7syl6bb 185 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( q  e.  ( 2nd `  ( A F B ) )  <->  E. c E. d ( ( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) )  /\  q  =  ( c G d ) ) ) )
95, 8anbi12d 442 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) )  <->  ( E. a E. b ( ( a  e.  ( 1st `  A
)  /\  b  e.  ( 1st `  B ) )  /\  q  =  ( a G b ) )  /\  E. c E. d ( ( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B
) )  /\  q  =  ( c G d ) ) ) ) )
10 ee4anv 1809 . . . . . 6  |-  ( E. a E. b E. c E. d ( ( ( a  e.  ( 1st `  A
)  /\  b  e.  ( 1st `  B ) )  /\  q  =  ( a G b ) )  /\  (
( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) )  /\  q  =  ( c G d ) ) )  <->  ( E. a E. b ( ( a  e.  ( 1st `  A )  /\  b  e.  ( 1st `  B
) )  /\  q  =  ( a G b ) )  /\  E. c E. d ( ( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) )  /\  q  =  ( c G d ) ) ) )
119, 10syl6bbr 187 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) )  <->  E. a E. b E. c E. d ( ( ( a  e.  ( 1st `  A
)  /\  b  e.  ( 1st `  B ) )  /\  q  =  ( a G b ) )  /\  (
( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) )  /\  q  =  ( c G d ) ) ) ) )
1211biimpa 280 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )  ->  E. a E. b E. c E. d ( ( ( a  e.  ( 1st `  A )  /\  b  e.  ( 1st `  B
) )  /\  q  =  ( a G b ) )  /\  ( ( c  e.  ( 2nd `  A
)  /\  d  e.  ( 2nd `  B ) )  /\  q  =  ( c G d ) ) ) )
13 an4 520 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  ( 1st `  A )  /\  c  e.  ( 2nd `  A ) )  /\  ( b  e.  ( 1st `  B
)  /\  d  e.  ( 2nd `  B ) ) )  <->  ( (
a  e.  ( 1st `  A )  /\  b  e.  ( 1st `  B
) )  /\  (
c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B
) ) ) )
14 prop 6573 . . . . . . . . . . . . . . . 16  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
15 prltlu 6585 . . . . . . . . . . . . . . . . 17  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  a  e.  ( 1st `  A )  /\  c  e.  ( 2nd `  A
) )  ->  a  <Q  c )
16153expib 1107 . . . . . . . . . . . . . . . 16  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  ->  ( ( a  e.  ( 1st `  A
)  /\  c  e.  ( 2nd `  A ) )  ->  a  <Q  c ) )
1714, 16syl 14 . . . . . . . . . . . . . . 15  |-  ( A  e.  P.  ->  (
( a  e.  ( 1st `  A )  /\  c  e.  ( 2nd `  A ) )  ->  a  <Q  c ) )
18 prop 6573 . . . . . . . . . . . . . . . 16  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
19 prltlu 6585 . . . . . . . . . . . . . . . . 17  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  b  e.  ( 1st `  B )  /\  d  e.  ( 2nd `  B
) )  ->  b  <Q  d )
20193expib 1107 . . . . . . . . . . . . . . . 16  |-  ( <.
( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  ->  ( ( b  e.  ( 1st `  B
)  /\  d  e.  ( 2nd `  B ) )  ->  b  <Q  d ) )
2118, 20syl 14 . . . . . . . . . . . . . . 15  |-  ( B  e.  P.  ->  (
( b  e.  ( 1st `  B )  /\  d  e.  ( 2nd `  B ) )  ->  b  <Q  d ) )
2217, 21im2anan9 530 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( a  e.  ( 1st `  A
)  /\  c  e.  ( 2nd `  A ) )  /\  ( b  e.  ( 1st `  B
)  /\  d  e.  ( 2nd `  B ) ) )  ->  (
a  <Q  c  /\  b  <Q  d ) ) )
23 genpdisj.ord . . . . . . . . . . . . . . 15  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
x  <Q  y  <->  ( z G x )  <Q 
( z G y ) ) )
24 genpdisj.com . . . . . . . . . . . . . . 15  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x G y )  =  ( y G x ) )
2523, 24genplt2i 6608 . . . . . . . . . . . . . 14  |-  ( ( a  <Q  c  /\  b  <Q  d )  -> 
( a G b )  <Q  ( c G d ) )
2622, 25syl6 29 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( a  e.  ( 1st `  A
)  /\  c  e.  ( 2nd `  A ) )  /\  ( b  e.  ( 1st `  B
)  /\  d  e.  ( 2nd `  B ) ) )  ->  (
a G b ) 
<Q  ( c G d ) ) )
2713, 26syl5bir 142 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( a  e.  ( 1st `  A
)  /\  b  e.  ( 1st `  B ) )  /\  ( c  e.  ( 2nd `  A
)  /\  d  e.  ( 2nd `  B ) ) )  ->  (
a G b ) 
<Q  ( c G d ) ) )
2827imp 115 . . . . . . . . . . 11  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( ( a  e.  ( 1st `  A
)  /\  b  e.  ( 1st `  B ) )  /\  ( c  e.  ( 2nd `  A
)  /\  d  e.  ( 2nd `  B ) ) ) )  -> 
( a G b )  <Q  ( c G d ) )
2928adantlr 446 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )  /\  (
( a  e.  ( 1st `  A )  /\  b  e.  ( 1st `  B ) )  /\  ( c  e.  ( 2nd `  A
)  /\  d  e.  ( 2nd `  B ) ) ) )  -> 
( a G b )  <Q  ( c G d ) )
3029adantrlr 454 . . . . . . . . 9  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )  /\  (
( ( a  e.  ( 1st `  A
)  /\  b  e.  ( 1st `  B ) )  /\  q  =  ( a G b ) )  /\  (
c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B
) ) ) )  ->  ( a G b )  <Q  (
c G d ) )
3130adantrrr 456 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )  /\  (
( ( a  e.  ( 1st `  A
)  /\  b  e.  ( 1st `  B ) )  /\  q  =  ( a G b ) )  /\  (
( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) )  /\  q  =  ( c G d ) ) ) )  ->  ( a G b )  <Q  (
c G d ) )
32 eqtr2 2058 . . . . . . . . . . 11  |-  ( ( q  =  ( a G b )  /\  q  =  ( c G d ) )  ->  ( a G b )  =  ( c G d ) )
3332ad2ant2l 477 . . . . . . . . . 10  |-  ( ( ( ( a  e.  ( 1st `  A
)  /\  b  e.  ( 1st `  B ) )  /\  q  =  ( a G b ) )  /\  (
( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) )  /\  q  =  ( c G d ) ) )  -> 
( a G b )  =  ( c G d ) )
3433adantl 262 . . . . . . . . 9  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )  /\  (
( ( a  e.  ( 1st `  A
)  /\  b  e.  ( 1st `  B ) )  /\  q  =  ( a G b ) )  /\  (
( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) )  /\  q  =  ( c G d ) ) ) )  ->  ( a G b )  =  ( c G d ) )
35 ltsonq 6496 . . . . . . . . . . 11  |-  <Q  Or  Q.
36 ltrelnq 6463 . . . . . . . . . . 11  |-  <Q  C_  ( Q.  X.  Q. )
3735, 36soirri 4719 . . . . . . . . . 10  |-  -.  (
a G b ) 
<Q  ( a G b )
38 breq2 3768 . . . . . . . . . 10  |-  ( ( a G b )  =  ( c G d )  ->  (
( a G b )  <Q  ( a G b )  <->  ( a G b )  <Q 
( c G d ) ) )
3937, 38mtbii 599 . . . . . . . . 9  |-  ( ( a G b )  =  ( c G d )  ->  -.  ( a G b )  <Q  ( c G d ) )
4034, 39syl 14 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )  /\  (
( ( a  e.  ( 1st `  A
)  /\  b  e.  ( 1st `  B ) )  /\  q  =  ( a G b ) )  /\  (
( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) )  /\  q  =  ( c G d ) ) ) )  ->  -.  ( a G b )  <Q 
( c G d ) )
4131, 40pm2.21fal 1264 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )  /\  (
( ( a  e.  ( 1st `  A
)  /\  b  e.  ( 1st `  B ) )  /\  q  =  ( a G b ) )  /\  (
( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) )  /\  q  =  ( c G d ) ) ) )  -> F.  )
4241ex 108 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )  ->  (
( ( ( a  e.  ( 1st `  A
)  /\  b  e.  ( 1st `  B ) )  /\  q  =  ( a G b ) )  /\  (
( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) )  /\  q  =  ( c G d ) ) )  -> F.  ) )
4342exlimdvv 1777 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )  ->  ( E. c E. d ( ( ( a  e.  ( 1st `  A
)  /\  b  e.  ( 1st `  B ) )  /\  q  =  ( a G b ) )  /\  (
( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) )  /\  q  =  ( c G d ) ) )  -> F.  ) )
4443exlimdvv 1777 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )  ->  ( E. a E. b E. c E. d ( ( ( a  e.  ( 1st `  A
)  /\  b  e.  ( 1st `  B ) )  /\  q  =  ( a G b ) )  /\  (
( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) )  /\  q  =  ( c G d ) ) )  -> F.  ) )
4512, 44mpd 13 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )  -> F.  )
4645inegd 1263 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  -.  ( q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )
4746ralrimivw 2393 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. q  e.  Q.  -.  ( q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 97    <-> wb 98    /\ w3a 885    = wceq 1243   F. wfal 1248   E.wex 1381    e. wcel 1393   A.wral 2306   E.wrex 2307   {crab 2310   <.cop 3378   class class class wbr 3764   ` cfv 4902  (class class class)co 5512    |-> cmpt2 5514   1stc1st 5765   2ndc2nd 5766   Q.cnq 6378    <Q cltq 6383   P.cnp 6389
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-mi 6404  df-lti 6405  df-enq 6445  df-nqqs 6446  df-ltnqqs 6451  df-inp 6564
This theorem is referenced by:  addclpr  6635  mulclpr  6670
  Copyright terms: Public domain W3C validator